检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
-user/work以外的目录,请将数据集等放到work路径下,不要放到非work路径下。 请不要将实例频繁保存镜像,建议一次将需要的安装包安装好,然后执行镜像保存,避免频繁执行镜像保存的动作,保存次数越多镜像越大,且多次保存后的镜像过大问题无法通过清理磁盘方式减少镜像的大小(Docker保存原理机制)。
主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.905) 场景介绍 准备工作 在Notebook调试环境中部署推理服务 在推理生产环境中部署推理服务 推理精度测试 推理性能测试 父主题: LLM大语言模型训练推理
WEBUI套件适配PyTorch NPU的推理指导(6.3.908) SD WebUI推理方案概览 在DevServer上部署SD WebUI推理服务 在Standard上部署SD WebUI推理服务 SD WebUI推理性能测试 父主题: 文生图模型训练推理
主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.906) 场景介绍 准备工作 在Notebook调试环境中部署推理服务 在推理生产环境中部署推理服务 推理精度测试 推理性能测试 推理模型量化 父主题: LLM大语言模型训练推理
low工作流、停止因运行Workflow工作流而创建的训练作业和部署的服务。同时,也需清理存储到OBS中的数据。 自动学习:自动学习运行时会收取费用,使用完请及时停止自动学习、停止因运行自动学习而创建的训练作业和部署的服务。同时,也需清理存储到OBS中的数据。 Notebook实例:
服务管理概述 服务管理,包括将已创建成功的模型部署为在线服务或本地服务。可以实现在线预测、本地预测、服务详情查询、查看服务日志等功能。 这里的在线服务包括“predictor”和“transformer”两类,都包括下文描述的功能,本章节以“predictor”服务为例进行说明。
使用AWQ量化工具转换权重 AWQ(W4A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表1。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化,量化方法为per-group。 Step1 模型量化
使用AWQ量化 AWQ(W4A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表3。 本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:per-group Step1 模型量化 可以在Huggingfac
使用AWQ量化工具转换权重 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化。 量化方法:W4A16
使用AWQ量化 AWQ(W4A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表3。 本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:per-group Step1 模型量化 可以在Huggingfac
使用AWQ量化工具转换权重 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化。 量化方法:W4A16
使用AWQ量化工具转换权重 AWQ(W4A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化,量化方法为per-group。
使用AWQ量化 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表3。 本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:W4A16 per-group/per-channel,
使用AWQ量化 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表3。 本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:W4A16 per-group/per-channel,W8A16
主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.910) 场景介绍 准备工作 在Notebook调试环境中部署推理服务 在推理生产环境中部署推理服务 推理精度测试 推理性能测试 推理模型量化 eagle 投机小模型训练 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明
主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.911) 场景介绍 准备工作 在Notebook调试环境中部署推理服务 在推理生产环境中部署推理服务 推理精度测试 推理性能测试 推理模型量化 Eagle投机小模型训练 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明
主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.907) 场景介绍 准备工作 在Notebook调试环境中部署推理服务 在推理生产环境中部署推理服务 推理精度测试 推理性能测试 推理模型量化 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 附录:大模型推理standard常见问题
主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.908) 场景介绍 准备工作 在Notebook调试环境中部署推理服务 在推理生产环境中部署推理服务 推理精度测试 推理性能测试 推理模型量化 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 附录:Standard大模型推理常见问题
主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.909) 场景介绍 准备工作 在Notebook调试环境中部署推理服务 在推理生产环境中部署推理服务 推理精度测试 推理性能测试 推理模型量化 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 附录:Standard大模型推理常见问题
数据准备使用流程 ModelArts是面向AI开发者的一站式开发平台,能够支撑开发者从数据到模型的全流程开发过程,包含数据处理、算法开发、模型训练、模型部署等操作。并且提供AI Gallery功能,能够在市场内与其他开发者分享数据、算法、模型等。为了能帮用户快速准备大量高质量的数据,Model