检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
使用TICS可信联邦学习进行联邦建模 场景描述 准备数据 发布数据集 创建可信联邦学习作业 选择数据 样本对齐 筛选特征 模型训练 模型评估 父主题: 纵向联邦建模场景
执行实时隐匿查询作业 企业A在发起实时隐匿查询前需要先执行数据初始化。 待实时预测作业初始化完成后,企业A可以通过页面单击“执行”试用发起查询。 例如查询id为“19581e27de7ced00ff1ce50b2047e7a567c76b1cbaebabe5ef03f7c3017
边缘节点部署模式下创建节点,该如何配置资源分配策略? 使用场景 购买计算节点页面,选择边缘部署模式。 操作步骤 进入购买计算节点页面。 部署配置选择边缘节点部署。 云租户部署模式下,TICS服务可以按照选取的规格,为客户预置默认资源分配策略。 边缘节点部署模式下,使用的纳管节点为
评估型横向联邦作业流程 基于横向联邦作业的训练结果,可以进一步评估横向联邦模型,将训练好的模型用于预测。 选择对应训练型作业的“历史作业”按钮,获取最新作业的模型结果文件路径。 图1 查看模型结果文件的保存位置 前往工作节点上步骤1展示的路径,下载模型文件。由于Logistic
样本对齐 单击右下角的下一步进入“样本对齐”页面,这一步是为了进行样本的碰撞,过滤出共有的数据交集,作为后续步骤的输入。企业A需要选择双方的样本对齐字段,并单击“对齐”按钮执行样本对齐。执行完成后会在下方展示对齐后的数据量及对齐结果路径。 父主题: 使用TICS可信联邦学习进行联邦建模
使用TICS联邦预测进行新数据离线预测 场景描述 准备数据 发布数据集 创建联邦预测作业 发起联邦预测 父主题: 纵向联邦建模场景
乳腺癌数据集作业结果 本节实验包含了如下三个部分:(1)训练轮数对联邦学习模型分类性能的影响;(2)迭代次数对联邦学习模型分类性能的影响;(3)参与方数据量不同时,本地独立训练对比横向联邦的模型性能。 不同训练参数对模型准确率、训练时长的影响 训练轮数对模型准确率的影响(迭代次数固定为20)
场景描述 某企业A在进行新客户营销时的成本过高,想要通过引入外部数据的方式提高营销的效果,降低营销成本。 因此企业A希望与某大数据厂商B展开一项合作,基于双方共有的数据进行联邦建模,使用训练出的联邦模型对新数据进行联邦预测,筛选出高价值的潜在客户,再针对这些客户进行定向营销,达成提高营销效果、降低营销成本的业务诉求。
准备数据 首先,企业A和大数据厂商B需要商议确定要提供的数据范围及对应的元数据信息,双方初始决定使用最近三个月的已有用户转化数据作为联邦训练的训练集和评估集,之后使用每周产生的新数据作为联邦预测的预测集。 表1 企业A的数据 字段名称 字段类型 描述 id string hash过后的手机号字符串
选择数据 首先企业A要在“数据选择”页面选择双方发布的数据集,已选择的数据集会出现在右侧,所选的数据集会用于后续的步骤。 父主题: 使用TICS可信联邦学习进行联邦建模
过低的iv值没有区分性会造成训练资源的浪费,过高的iv值又过于突出可能会过度影响训练出来的模型。 例如这里大数据厂商提供的f4特征iv值是0,说明这个特征对于标签的识别没有区分度,可以不选用;而f0、f2特征的iv值中等,适合作为模型的训练特征。 根据计算得出的iv值,企业A调
模型训练 企业A在完成特征选择后,可以单击右下角的“启动训练”按钮,配置训练的超参数并开始训练。 等待训练完成后就可以看到训练出的模型指标。 模型训练完成后如果指标不理想可以重复调整7、8两步的所选特征和超参数,直至训练出满意的模型。 父主题: 使用TICS可信联邦学习进行联邦建模
统计型作业的差分隐私保护 本示例作业,以统计各行业的“企业税收总和”与“用电量总和”,进行统计分析: Select industry, sum(tax_bal), sum(electric_bal) from LEAGUE_CREATOR.tax a join
模型评估 训练时的评估指标是用训练的数据集中随机采样的记录计算的,完成训练后企业A也可以使用其他的数据集对同一个模型进行多次的评估。单击“发起评估”选择训练参与方不同的数据集即可发起模型评估。 至此使用可信联邦学习进行联邦建模的过程已经完成,企业A已经训练出了一个符合自己要求的算
对这些客户进行定向营销,达成提高营销效果、降低营销成本的业务诉求。 根据前一篇文章,企业A已经通过可信联邦学习功能训练出了一个预测客户时候是高价值用户的模型。 本文主要介绍企业A和大数据厂商B如何通过已有的模型对新的业务数据进行预测。 父主题: 使用TICS联邦预测进行新数据离线预测
177167621,4.553682264,-1.103220799,2.375621631 注意由于这是新产生的业务数据,企业A并不知道这些用户是否是高价值用户,因此没有label用户标签字段。 表2 大数据厂商B的数据 字段名称 字段类型 描述 id string hash过后的手机号字符串
阶段六:统计型作业的差分隐私保护 本示例作业,以统计各行业的“企业税收总和”与“用电量总和”,进行统计分析: Select industry, sum(tax_bal), sum(electric_bal) from LEAGUE_CREATOR.tax a join
基于MPC算法的高安全级别计算 完成demo验证阶段,为提升数据保护级别,接入以纯密文的状态做计算的更高安全级别的数据,可以通过开启高隐私级别开关,提升空间安全级别。 图1 高隐私级别开关 再次单击作业,审批进行的同时敏感数据被进行了同态加密。DAG图显示了“psi + 同态”的
使用TICS多方安全计算进行联合样本分布统计 场景描述 准备数据 发布数据集 创建样本分布统计作业 执行样本分布联合统计 数据优化 父主题: 纵向联邦建模场景
发布数据集 企业A和大数据厂商B分别将自己的csv数据文件上传到自己的计算节点上,通过“数据管理”模块创建各自的数据集。 企业A的数据集如下: 大数据厂商B的数据集如下: 创建数据集后单击“发布”按钮即可将数据的元数据信息发布到tics空间侧,供其他合作方参考。 父主题: 使用TICS可信联邦学习进行联邦建模