检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
multi-lora 什么是multi-lora LoRA(Low-Rank Adaptation)是一种适用于大模型的轻量化微调技术方法。原理是通过在模型层中引入低秩矩阵,将大模型的权重降维处理,来实现高效的模型适配。相比于传统的微调方法,LoRA不仅能大幅减少所需的训练参数,
multi-lora 什么是multi-lora LoRA(Low-Rank Adaptation)是一种适用于大模型的轻量化微调技术方法。原理是通过在模型层中引入低秩矩阵,将大模型的权重降维处理,来实现高效的模型适配。相比于传统的微调方法,LoRA不仅能大幅减少所需的训练参数,
训练参数配置说明【旧】 如果用户希望自定义参数进行训练,可直接编辑对应模型的训练脚本,请根据实际模型修改。 表1 模型训练脚本参数 参数 示例值 参数说明 ORIGINAL_TRAIN_DATA_PATH 【预训练:pt】预训练数据集相对或绝对地址 【微调:sft】微调数据集相对或绝对地址
训练参数配置说明【旧】 如果用户希望自定义参数进行训练,可直接编辑对应模型的训练脚本,请根据实际模型修改。 表1 模型训练脚本参数 参数 示例值 参数说明 ORIGINAL_TRAIN_DATA_PATH 【预训练:pt】预训练数据集相对或绝对地址 【微调:sft】微调数据集相对或绝对地址
训练参数配置说明【旧】 如果用户希望自定义参数进行训练,可直接编辑对应模型的训练脚本,请根据实际模型修改。 表1 模型训练脚本参数 参数 示例值 参数说明 ORIGINAL_TRAIN_DATA_PATH 【预训练:pt】预训练数据集相对或绝对地址 【微调:sft】微调数据集相对或绝对地址
训练参数配置说明【旧】 如果用户希望自定义参数进行训练,可直接编辑对应模型的训练脚本,请根据实际模型修改。 表1 模型训练脚本参数 参数 示例值 参数说明 ORIGINAL_TRAIN_DATA_PATH 【预训练:pt】预训练数据集相对或绝对地址 【微调:sft】微调数据集相对或绝对地址
资源池监控 功能介绍 获取资源池的监控信息。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v2/{project_id}/pools/{pool_name}/monitor
删除AI应用 功能介绍 删除AI应用,根据AI应用ID删除指定AI应用,cascade取值为true时除了删除AI应用ID指定的AI应用,还会删除其他与指定AI应用同名不同版本的AI应用;默认只删除当前AI应用ID所对应的AI应用。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API
批量添加样本 功能介绍 批量添加样本。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v2/{project_id}/datasets/{dataset
使用SDK调测单机训练作业 代码中涉及到的OBS路径,请用户替换为自己的实际OBS路径。 代码是以PyTorch为例编写的,不同的AI框架之间,整体流程是完全相同的,仅需修改6和10中的framework_type参数值即可,例如:MindSpore框架,此处framework_
使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ
导出ModelArts数据集中的数据到AI Gallery 针对数据集中的数据,用户可以选中部分数据或者通过条件筛选出需要的数据,导出到AI Gallery。用户可以通过任务历史查看数据导出的历史记录。发布到AI Gallery中的数据集,可以设置是否公开,将数据集公开给其他人使用。
使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ
使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表3。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ
使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ
使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ
使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表3。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ
使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表3。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ
使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表1。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ
使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表3。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ