已找到以下 186 条记录
AI智能搜索
产品选择
推荐系统 RES
没有找到结果,请重新输入
产品选择
推荐系统 RES
在搜索结果页开启AI智能搜索
开启
产品选择
没有找到结果,请重新输入
会话过期
当前登录超时,请重新登录
  • 数据源管理简介 - 推荐系统 RES

    数据源管理简介 RES以数据为基础进行算法计算并完成推荐,您可以在RES管理控制台,数据源页面完成数据创建、数据修改等操作,为智能场景推荐和自定义场景推荐做好数据准备。 数据类型 当前RES支持创建数据源和导入近线数据。创建数据源的数据格式和近线数据导入的格式要求一致,包括用户数据、物品数据和行为数据。

  • 召回策略 - 推荐系统 RES

    召回策略 召回是指对大量的物品做初选,为每一个用户形成个性化侯选集。召回策略是指通过大数据计算或深度训练生成推荐候选集的算法策略。召回策略中内置了多种召回方式,您可根据自己场景选择。 基于综合行为热度推荐 基于综合行为热度推荐统计用户对物品所有行为的加权热度。如果选择用户分群,将

  • 实时日志 - 推荐系统 RES

    实时日志 RES根据实时发送到DIS上的日志,进行数据计算和处理,更新用户的相关数据。用户发送到DIS上的数据具体如下: 实时行为日志 实时行为日志的作用包括: 更新用户的兴趣标签。 记录所选行为类型的历史记录。 更新用户的上下文信息。 召回候选集。 表1 实时行为日志字段描述 字段名

  • 离线数据源 - 推荐系统 RES

    离线数据源 调用RES之前,您需要准备3种基础数据包并上传至OBS,离线数据源目前支持CSV和JSON。具体数据包请参见表1 基础数据表。 表1 基础数据表 数据类型 表名 用户类数据 用户属性表 物品类数据 物品属性表 行为类数据 用户操作行为表 用户需要自己手工创建整理这些表并存储到OBS上。

  • 召回策略 - 推荐系统 RES

    召回策略 召回是指对大量的物品做初选,为每一个用户形成个性化侯选集。召回策略中内置了多种召回方式,用户可根据自己场景选择。召回策略对应流程请参见图1。 图1 召回策略 推荐系统支持的召回方式有: 基于特定行为热度推荐 基于综合行为热度推荐 基于物品的协同过滤推荐 基于用户的协同过滤推荐

  • 特征工程 - 推荐系统 RES

    特征工程 特征工程可对推荐系统的离线数据进行处理,它包含两个功能: 从离线数据中提取用户、物品画像和RES内部通用格式数据; 把RES内部通用格式数据处理成训练排序模型所需的训练数据、测试数据等。 与功能对应,特征工程的两个任务分别是: 初始用户画像-物品画像-标准宽表生成 排序样本预处理