检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Lite进行推理时一般需要先设置目标设备的上下文信息,然后构建推理模型,获取输入数据,模型预测并得到最终的结果。一个基础的推理框架写法如下所示: # base_mslite_demo.py import mindspore_lite as mslite # 设置目标设备上下文为Ascend,指定device_id为0。
Query参数 参数 是否必选 参数类型 描述 offset 否 Integer 查询算法的偏移量,最小为0。例如设置为1,则表示从第二条开始查。 limit 否 Integer 查询算法的限制量。最小为1,最大为50。 sort_by 否 String 查询算法排列顺序的指标。默认使用create_time排序。
模型文件所在路径为OBS路径,格式为“/obs_bucketname/.../model_file_parent_dir/”。 当source_location_type为LOCAL_SOURCE时,模型文件所在路径为本地路径,格式为“/local_path/.../model_file_parent_dir/”。
_LARGE_FILE_METHOD,如果输出值为1则为V1版本,如果输出值为2,则为V2版本。 V1版本修改:file_io._NUMBER_OF_PROCESSES=1 V2版本修改:可以 file_io._LARGE_FILE_METHOD = 1,将模式设置成V1然后用V1的方式修改规避,也可以直接file_io
snt3等。特别的,当取值为custom时,代表使用自定义规格,与custom_spec字段配套。 weight Integer 权重,分配到此模型的流量权重。 source_type String 模型来源,当模型是由自动学习产生时返回此字段,取值为auto。 model_id
容器使用不同的文件系统。work_dir为宿主机中工作目录,目录下可存放项目所需代码、数据等文件。container_work_dir为要挂载到的容器中的目录。为方便两个地址可以相同。 容器不能挂载到/home/ma-user目录,此目录为ma-user用户家目录。如果容器挂载到
入门案例:快速创建一个物体检测的数据集 本节以准备训练物体检测模型的数据为例,介绍如何针对样例数据,进行数据分析、数据标注等操作,完成数据准备工作。在实际业务开发过程中,可以根据业务需求选择数据管理的一种或多种功能完成数据准备。此次操作分为以下流程: 准备工作 创建数据集 数据分析
按节点比例:每批次驱动升级的实例数量为“节点比例*资源池实例总数”。 按实例数量:可以设置每批次驱动升级的实例数量。 对于不同的升级方式,滚动升级选择实例的策略会不同: 如果升级方式为安全升级,则根据滚动节点数量选择无业务的节点,隔离节点并滚动升级。 如果升级方式为强制升级,则根据滚动节点数量随机选择节点,隔离节点并滚动升级。
rts提供的公共资源池完成,按照使用量计费,方便快捷。用户无需创建公共资源池,直接使用即可。 专属资源池和公共资源池的能力差异 专属资源池为用户提供独立的计算集群、网络,不同用户间的专属资源池物理隔离,公共资源池仅提供逻辑隔离,专属资源池的隔离性、安全性要高于公共资源池。 专属资
问题4:Error waiting on exit barrier错误 错误截图: 报错原因:多线程退出各个节点间超时时间默认为300s,时间设置过短。 解决措施: 修改容器内torch/distributed/elastic/agent/server/api.py文件参数: vim
规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 不同模型推荐的参数与NPU卡数设置 序号 支持模型 支持模型参数量 文本序列长度 并行参数设置 规格与节点数 1 llama2 llama2-7b SEQ_LEN=4096 TP(tensor model
会话对象,初始化方法请参考Session鉴权。 offset 否 Integer 查询作业的偏移量,最小为0。例如设置为1,则表示从第二条开始查。 limit 否 Integer 查询作业的限制量。最小为1,最大为50。 sort_by 否 String 查询作业排列顺序的指标。默认使用create_time排序。
bs://test-modelarts/code/main.py”。 超参 当资源规格为单机多卡时,需要指定超参world_size和rank。 当资源规格为多机时(即实例数大于 1),无需设置超参world_size和rank,超参会由平台自动注入。 方式二:使用自定义镜像功能,通过torch
官方提供的命令行工具,自带完善的下载功能。具体步骤可参考:HF-Mirror中的使用教程。完成依赖安装和环境变量配置后,以Llama2-70B为例: huggingface-cli download --resume-download meta-llama/Llama-2-70b-chat-hf
256]。 workspace_id 否 String 指定算法所处的工作空间,默认值为“0”。“0” 为默认的工作空间。 ai_project 否 String 指定算法所属的ai项目,默认值为"default-ai-project"。ai项目已下线,无需关注。 表4 AlgorithmJobConfig
docker-runc.aarch64 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward 如果net.ipv4.ip_forward配置
代表需要在容器中挂载宿主机的目录。宿主机和容器使用不同的文件系统,work_dir为宿主机中工作目录,目录下存放着训练所需代码、数据等文件。container_dir为要挂载到的容器中的目录。为方便两个地址可以相同。 shm-size:共享内存大小。 ${container_n
model_args:标志向模型构造函数提供额外参数,比如指定运行模型的数据类型; vllm_path是模型权重路径; max_model_len 是最大模型长度,默认设置为4096; gpu_memory_utilization是gpu利用率,如果模型出现oom报错,调小参数; tensor_parallel_size是使用的卡数;
# 原始数据目录 # 训练输出目录路径:根据{OUTPUT_SAVE_DIR}或yaml文件{output_dir}参数设置 |──{output_dir} # 输出目录,以下目录在训练过程中自动生成 |──conv
model_args:标志向模型构造函数提供额外参数,比如指定运行模型的数据类型; vllm_path是模型权重路径; max_model_len 是最大模型长度,默认设置为4096; gpu_memory_utilization是gpu利用率,如果模型出现oom报错,调小参数; tensor_parallel_size是使用的卡数;