检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
最短路径算法(Shortest Path) 概述 最短路径算法(Shortest Path)用以解决图论研究中的一个经典算法问题,旨在寻找图中两节点之间的最短路径。 适用场景 最短路径算法(Shortest Path)适用于路径设计、网络规划等场景。 参数说明 表1 最短路径算法(Shortest
关联预测算法(Link Prediction) 概述 关联预测算法(Link Prediction)给定两个节点,根据Jaccard度量方法计算两个节点的相似程度,预测节点之间的紧密关系。 适用场景 关联预测算法(Link Prediction)适用于社交网上的好友推荐、关系预测等场景。
时序路径分析(Temporal Paths) 概述 时序路径分析算法(Temporal Paths)区别于静态图上的路径分析,结合了动态图上信息传播的有序性,路径上后一条边的经过时间要晚于或等于前一条边,呈现时间递增(或非减)性。 时序路径不满足传递性:即从节点i到节点j有一条时
图统计 代码样例文件路径 样例方法名 对应的API com.huawei.ges.graph.sdk.v1.examples.persistence testShowGraphVersion 查询图版本信息 testShowGraphSummary 查询图概要信息 父主题: 持久化版样例
图统计 代码样例文件路径 样例方法名 对应的API com.huawei.ges.graph.sdk.v1.examples.persistence testShowGraphVersion 查询图版本信息 testShowGraphSummary 查询图概要信息 父主题: 持久化版样例
GES自定义策略 如果系统预置的GES权限,不满足您的授权要求,可以创建自定义策略。自定义策略中可以添加的授权项(Action)请参考权限策略和授权项。 目前华为云支持以下两种方式创建自定义策略: 可视化视图创建自定义策略:无需了解策略语法,按可视化视图导航栏选择云服务、操作、资源、条件等策略内容,可自动生成策略。
准备元数据 本地准备元数据 您需要在本地准备好需要上传的元数据文件,将元数据文件导入到图引擎服务中以便后续进行图分析。 准备上传的元数据文件需要注意以下几点: 可导入的元数据文件数上限为50,达到上限将不能再继续导入元数据。 元数据文件的格式必须为xml格式。 导入元数据至OBS(可选)
持久化版 持久化版业务面API包括点操作、边操作、元数据操作、索引操作、HyG数据集管理、HyG算法、算法、图统计、图操作、Job管理、Cypher操作API。 表1 点操作API 名称 起始版本 URL 功能描述 查询点详情 1.0.0 GET/ges/v1.0/{projec
算法API 最短路径(Shortest Path)(1.0.0) 点集最短路(Shortest Path of Vertex Sets)(1.0.0) 标签传播(Label Propagation)(1.0.0) Louvain算法(1.0.0) 父主题: 业务面API
使用管理面SDK 获取SDK安装信息 进入API Explorer,产品选择“图引擎服务”。 单击任意API的“代码示例”,再单击“SDK信息”即可获取安装方式与使用说明。 图1 查看代码示例 图2 SDK信息 生成SDK代码示例 进入API Explorer,产品选择“图引擎服务”。
使用业务面SDK 下载与安装SDK 初始化参数 Java SDK Python SDK
监控项列表 通过图实例运维监控功能提供的相关监控项,用户可以从中获取有关图实例的状态以及可用资源数量等,并深入了解当前实例实时的资源消耗情况。 图引擎服务(GES)相关监控项指标,具体请参见表 图引擎服务(GES)监控列表。 表1 图引擎服务(GES)监控列表 监控对象 指标名称
标签传播算法(Label Propagation) 概述 标签传播算法(Label Propagation)是一种基于图的半监督学习方法,其基本思路是用已标记节点的标签信息去预测未标记节点的标签信息。利用样本间的关系建图,节点包括已标注和未标注数据,其边表示两个节点的相似度,节点
关联路径算法(n-Paths) 概述 关联路径算法(n-Paths)用于寻找图中两节点之间在层关系内的n条路径。 适用场景 关联路径算法(n-Paths)适用于关系分析、路径设计、网络规划等场景。 参数说明 表1 关联路径算法(n-Paths)参数说明 参数 是否必选 说明 类型
历史查询 在运维监控页面左侧导航栏单击“监控>历史查询”,进入历史查询页面,该页面展示了图实例历史上运行过的异步任务的详情(和业务面任务中心展示的一样)。 图1 历史查询页面 父主题: 监控
紧密中心度算法(Closeness Centrality) 概述 紧密中心度算法(Closeness Centrality)计算一个节点到所有其他可达节点的最短距离的倒数,进行累积后归一化的值。紧密中心度可以用来衡量信息从该节点传输到其他节点的时间长短。节点的“Closeness
三角计数算法(Triangle Count) 概述 三角计数算法(Triangle Count)统计图中三角形个数。三角形越多,代表图中节点关联程度越高,组织关系越严密。 适用场景 三角计数算法(Triangle Count)适用于衡量图的结构特性场景。 参数说明 参数 是否必选
中介中心度算法(Betweenness Centrality) 概述 中介中心度算法(Betweenness Centrality)以经过某个节点的最短路径数目来刻画节点重要性的指标。 适用场景 可用作社交、风控等网络中“中间人”发掘,交通、传输等网络中关键节点识别;适用于社交、金融风控、交通路网、城市规划等领域
图操作 代码样例文件路径 样例方法名 对应的API com.huawei.ges.graph.sdk.v1.examples.persistence testImportGraphPersistence 导入图 testClearGraphPersistence 清空图 父主题:
图操作 代码样例文件路径 样例方法名 对应的API com.huawei.ges.graph.sdk.v1.examples.persistence testImportGraphPersistence 导入图 testClearGraphPersistence 清空图 父主题: