检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
和PP流水线并行(pipeline-model-parallel-size),可以尝试增加 TP和PP的值,一般TP×PP≤NPU数量,并且要被整除,具体调整值可参照表1进行设置。 可调整参数:MBS指最小batch处理的样本量(micro-batch-size)、GBS指一个iteration所处理的样本
copy_parallel(local_data_dir, obs_data_dir) 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 不同模型推荐的参数与NPU卡数设置 序号 支持模型 支持模型参数量 文本序列长度 并行参数设置
创建好的标注作业,您可以执行智能标注、发布、修改和删除等操作。 图片(图像分类、物体检测、图像分割) 图2 图像分类和物体检测类型的参数 表1 图片类型标注作业的详细参数 参数名称 说明 数据集名称 选择支持当前标注类型的数据集。 添加标签集 设置标签名称:在标签名称文本框中,输入标签名称。长度为1~1024字符。
如果密钥选择错误,则弹出提示信息,请根据提示信息选择正确密钥。 图9 选择正确的密钥文件 当左下角显示如下状态时,代表实例连接成功: 图10 实例连接成功 当弹出如下错误时,代表实例连接失败,请关闭弹窗,并查看OUTPUT窗口的输出日志,请查看FAQ并排查失败原因。 图11 实例连接失败
性能会有比较好的参考。算子级的调优某些情况下如果是明显的瓶颈或者性能攻坚阶段,考虑到门槛较高,可以联系华为工程师获得帮助。 精度问题根因和表现种类很多,会导致问题定位较为复杂,一般还是需要GPU上充分稳定的网络(包含混合精度)再到NPU上排查精度问题。常见的精度调测手段,包含使用
针对之前使用访问密钥授权的用户,建议清空授权,然后使用委托进行授权。 在左侧导航栏中选择“模型训练 > 训练作业”,默认进入“训练作业”列表。 在“创建训练作业”页面,填写相关参数信息,然后单击“提交”。 创建方式:选择“自定义算法”。 启动方式:选择“自定义”。 镜像:选择上传的自定义镜像。
sft_70b.sh 和 0_pl_sft_13b.sh 。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。 表1 训练超参配置说明 参数 示例值 参数说明 ORIGINAL_TRAIN_DATA_PATH /home/
sft_70b.sh 和 0_pl_sft_13b.sh 。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。 表1 训练超参配置说明 参数 示例值 参数说明 ORIGINAL_TRAIN_DATA_PATH /home/
obs_data_dir) 模型推荐的参数与NPU卡数设置 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 不同模型推荐的参数与NPU卡数设置 序号 支持模型 支持模型参数量 文本序列长度 并行参数设置
排序位置和访问量,能更好的支撑用户使用该资产。 在镜像详情页,选择“镜像介绍”页签,单击右侧“编辑介绍”。 编辑镜像基础设置和镜像描述。 表1 镜像介绍的参数说明 参数名称 说明 基础设置 中文名称 显示镜像的名称,不可编辑。 README.md - 资产的README内容,支持
和访问量,能更好的支撑用户使用该资产。 在数据集详情页,选择“数据集介绍”页签,单击右侧“编辑介绍”。 编辑数据集基础设置和数据集描述。 表1 数据集介绍的参数说明 参数名称 说明 基础设置 中文名称 显示数据集的名称,不可编辑。 许可证 数据集遵循的使用许可协议,根据业务需求选择合适的许可证类型。
安装过程预计1~2分钟,如图2所示,请耐心等待。 图2 安装过程 安装完成后,系统右下角提示安装完成,导航左侧出现ModelArts图标和SSH远程连接图标,表示VS Code插件安装完成。 图3 安装完成提示 图4 安装完成 当前网络不佳时SSH远程连接插件可能未安装成功,此时无需操作,在Step4
length。 --workers:设置数据处理使用执行卡数量 / 启动的工作进程数。 --log-interval:是一个用于设置日志输出间隔的参数,表示输出日志的频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 输出数据预处理结果路径: 训练完成后,以 llama2-13b
length。 --workers:设置数据处理使用执行卡数量 / 启动的工作进程数。 --log-interval:是一个用于设置日志输出间隔的参数,表示输出日志的频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 输出数据预处理结果路径: 训练完成后,以 llama2-13b
installed ma_cli.*.*.* 在安装ma-cli时会默认同时安装所需的依赖包。当显示“Successfully installed”时,表示ma-cli安装完成。 如果在安装过程中报错提示缺少相应的依赖包,请根据报错提示执行如下命令进行依赖包安装。 pip install xxxx
conversations:包含一系列对话对象,每个对象都由发言者(from)和发言内容(value)组成。 from:表示对话的角色,可以是"human"(人类)或"gpt"(机器),表示是谁说的这句话。 value:具体的对话内容。 system:系统提示词,用来为整个对话设定场景或提供指导原则。
${MA_JOB_DIR}/demo-code/start_sshd.sh && your custom command 命令中的“your custom command”表示训练作业中需要执行的其他自定义命令。 “环境变量”增加“MY_SSHD_PORT = 38888”。 “配置节点间SSH免密互信”开关打开
obs_data_dir) 模型推荐的参数与NPU卡数设置 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 不同模型推荐的参数与NPU卡数设置 序号 支持模型 支持模型参数量 文本序列长度 并行参数设置
conversations:包含一系列对话对象,每个对象都由发言者(from)和发言内容(value)组成。 from:表示对话的角色,可以是"human"(人类)或"gpt"(机器),表示是谁说的这句话。 value:具体的对话内容。 system:系统提示词,用来为整个对话设定场景或提供指导原则。
conversations:包含一系列对话对象,每个对象都由发言者(from)和发言内容(value)组成。 from:表示对话的角色,可以是"human"(人类)或"gpt"(机器),表示是谁说的这句话。 value:具体的对话内容。 system:系统提示词,用来为整个对话设定场景或提供指导原则。