检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
附录:指令微调训练常见问题 问题1:在训练过程中遇到NPU out of memory 解决方法: 将yaml文件中的per_device_train_batch_size调小,重新训练如未解决则执行下一步。 替换深度学习训练加速的工具或增加zero等级,可参考各个模型深度学习训练加速框架的选择
场景描述 ModelArts作为顶层服务,其部分功能依赖于其他服务的访问权限。本章节主要介绍对于IAM子账号使用ModelArts时,如何根据需要开通的功能配置子账号相应权限。 权限列表 子账号的权限,由主用户来控制,主用户通过IAM的权限配置功能设置用户组的权限,从而控制用户组内的子账号的权限
您可以准备相同规格的弹性云服务器ECS或者应用本地已有的主机进行自定义镜像的制作。 购买ECS服务器的具体操作请参考购买并登录Linux弹性云服务器。“CPU架构”选择“x86计算”,“镜像”选择“公共镜像”,推荐使用Ubuntu18.04的镜像。 安装Docker。
# run.sh调用app.py启动服务器,app.py请参考https示例 python app.py 除了按上述要求设置启动命令,您也可以在镜像中自定义启动命令,在创建模型时填写与您镜像中相同的启动命令。
InternVL2基于LIte Server适配PyTorch NPU训练指导(6.3.912) 方案概览 本方案介绍了在ModelArts Lite Server上使用昇腾计算资源Ascend Snt9B开展InternVL2-8B, InternVL2-26B和InternVL2
/scripts/obs_pipeline.sh 如果镜像使用ECS中构建新镜像构建的新镜像时,训练作业启动命令中输入: cd /home/ma-user/modelarts/user-job-dir/AscendSpeed; sh .
文档准备镜像步骤中,仅提供:直接使用基础镜像方案、ECS中构建新镜像方案,删除使用Notebook创建镜像方案。 文档中新增对 llama3 支持长序列文本(sequence_length > 32k)训练内容,例如新增参数context-parallel-size。
cat <<EOF > /usr/lib/systemd/system/buildkitd.service [Unit] Description=buildkitd After=network.target [Service] ExecStart=/usr/local/buildkit
# run.sh调用app.py启动服务器,app.py请参考https示例 python app.py 除了按上述要求设置启动命令,您也可以在镜像中自定义启动命令,在创建模型时填写与您镜像中相同的启动命令。
preprocessed_data |──converted_hf2mg_weight_TP${TP}PP${PP} |──checkpoint # 训练完成生成目录Qwen2-7B,自动生成 上传代码和权重文件到工作环境 使用root用户以SSH的方式登录服务器
/scripts/obs_pipeline.sh 如果镜像使用ECS中构建新镜像构建的新镜像时,训练作业启动命令中输入: cd /home/ma-user/modelarts/user-job-dir/AscendSpeed; sh .
/scripts/obs_pipeline.sh 如果镜像使用ECS中构建新镜像构建的新镜像时,训练作业启动命令中输入: cd /home/ma-user/modelarts/user-job-dir/AscendSpeed; sh .
CogVideoX模型基于Lite Server适配PyTorch NPU全量训练指导(6.3.911) 本文档主要介绍如何在ModelArts的Lite Server环境中,使用NPU卡对CogVideoX模型基于sat框架进行全量微调。本文档中提供的脚本,是基于原生CogVideoX
开发用于自定义镜像训练的代码 当ModelArts Standard提供的预置框架不满足您的诉求时,ModelArts Standard支持用户构建自定义镜像用于模型训练。 自定义镜像的制作要求用户对容器相关知识有比较深刻的了解,除非订阅算法和预置框架无法满足需求,否则不推荐使用。
对于使用本地IDE的开发者,由于本地资源限制,运行和调试环境大多使用团队公共搭建的资源服务器,并且是多人共用,这带来一定的环境搭建和维护成本。
benchmark_eval ├──opencompass.sh #运行opencompass脚本 ├──install.sh #安装opencompass脚本 ├──vllm_api.py #启动vllm api服务器 ├──
benchmark_eval ├──opencompass.sh #运行opencompass脚本 ├──install.sh #安装opencompass脚本 ├──vllm_api.py #启动vllm api服务器 ├──
|── train-00000-of-00001-a09b74b3ef9c3b56.parquet #原始数据文件 |── alpaca_gpt4_data.json #微调数据文件 上传代码和权重文件到工作环境 使用root用户以SSH的方式登录服务器
多模态模型推理性能测试 多模态模型推理的性能测试目前仅支持静态性能测试。 静态性能测试是指评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 性能benchmark验证使用到的脚本存放在代码包
查询服务更新日志 功能介绍 查询实时服务更新日志。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v1/{project_id}/services/{service_id