检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
使用SmoothQuant量化工具转换权重 SmoothQuant(W8A8)量化方案能降低模型显存以及需要部署的卡数。也能同时降低首token时延和增量推理时延。支持SmoothQuant(W8A8)量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Noteboo
在推理生产环境中部署推理服务 本章节介绍如何在ModelArts的推理生产环境(ModelArts控制台的在线服务功能)中部署推理服务。 Step1 准备模型文件和权重文件 在OBS桶中,创建文件夹,准备模型权重文件、推理启动脚本run_vllm.sh及SSL证书。此处以chatglm3-6b为例。
在推理生产环境中部署推理服务 本章节介绍如何在ModelArts的推理生产环境(ModelArts控制台的在线服务功能)中部署推理服务。 Step1 准备模型文件和权重文件 在OBS桶中,创建文件夹,准备模型权重文件、推理启动脚本run_vllm.sh及SSL证书。此处以chatglm3-6b为例。
在推理生产环境中部署推理服务 本章节介绍如何在ModelArts的推理生产环境(ModelArts控制台的在线服务功能)中部署推理服务。 Step1 准备模型文件和权重文件 在OBS桶中,创建文件夹,准备模型权重文件、推理启动脚本run_vllm.sh及SSL证书。此处以chatglm3-6b为例。
推理性能测试 本章节介绍如何进行推理性能测试,建议在Notebook的JupyterLab中另起一个Terminal,执行benchmark脚本进行性能测试。若需要在生产环境中进行推理性能测试,请通过调用接口的方式进行测试。 benchmark方法介绍 性能benchmark包括两部分。
使用AWQ量化 AWQ(W4A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表3。 本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:per-group Step1 模型量化 可以在Huggingfac
使用AI市场物体检测YOLOv3_Darknet53算法训练后部署在线服务报错 问题现象 使用AI市场物体检测YOLOv3_Darknet53算法进行训练,将数据集切分后进行部署在线服务报错,日志如下:TypeError: Cannot interpret feed_dict key
在MaaS中创建模型 在模型广场选择模型后,需要使用模型创建一个自定义模型,才能进行模型训练、推理。 场景描述 基于ModelArts Studio大模型即服务平台在模型广场预置的模型模板,用户可以使用推荐的模型权重文件或自定义的模型权重文件,创建一个自己的模型。 创建成功的模型可以在ModelArts
OBS复制过程中提示“BrokenPipeError: Broken pipe” 问题现象 训练作业在使用MoXing复制数据时,日志中出现报错“BrokenPipeError: [Errno xx] Broken pipe”。 原因分析 出现该问题的可能原因如下: 在大规模分布
对当前代码进行打断点,即在代码左侧进行单击,就会出现小红点。 此时,即可按照正常的代码调试步骤对代码调试,在界面左边会显示debug信息,代码上方有相应的调试步骤。 常见问题 在ModelArts控制台界面上单击VS Code接入并在新界面单击打开,未弹出VS Code窗口 远程连接出现弹窗报错:Could
使用AWQ量化工具转换权重 AWQ(W4A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表1。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化,量化方法为per-group。 Step1 模型量化
SourceInfo 参数 是否必选 参数类型 描述 cluster_id 否 String MRS集群ID。可登录MRS控制台查看。 cluster_mode 否 String MRS集群运行模式。可选值如下: 0:普通集群 1:安全集群 cluster_name 否 String MRS集群名称。可登录MRS控制台查看。
服务管理概述 服务管理,包括将已创建成功的模型部署为在线服务或本地服务。可以实现在线预测、本地预测、服务详情查询、查看服务日志等功能。 这里的在线服务包括“predictor”和“transformer”两类,都包括下文描述的功能,本章节以“predictor”服务为例进行说明。
小。 blocksize系统默认为4096B,总共有三种大小:1024B、2048B、4096B。 创建文件越快,越容易触发(机制大概是:有一个缓存,这块大小和上面的1和2有关,目录下文件数量比较大时会启动,使用方式是边用边释放)。 程序运行过程中,产生了core文件,core文件占满了"/"根目录空间。
创建在线服务包 功能介绍 计费工作流购买资源。 接口约束 无 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v2/{project_id}/workfl
模板进行训练,模板选择可参照表1中的template列 max_samples 50000 用于指定训练过程中使用的最大样本数量。如果设置了这个参数,训练过程将只使用指定数量的样本,而忽略其他样本。这可以用于控制训练过程的规模和计算需求 overwrite_cache true
String 资源类型,可选值如下: Workload type String 作业所属业务类型。可选值如下: train:训练作业 namespace String 作业所属资源池名称。 name String 作业名称。 jobName String 上层业务作业名称。 uid String
使用kv-cache-int8量化 kv-cache-int8是实验特性,在部分场景下性能可能会劣于非量化。当前支持per-tensor静态量化和per-tensor+per-head静态量化,支持kv-cache-int8量化和FP16、BF16、AWQ、smoothquant的组合。
objects 支持给创建出来的节点加taints来设置反亲和性,非特权池不能指定。 labels 否 Map<String,String> k8s标签,格式为key/value键值对。 tags 否 Array of UserTag objects 资源标签,非特权池不能指定。 network
使用AWQ量化 AWQ(W4A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表3。 本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:per-group Step1 模型量化 可以在Huggingfac