检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
通过vectorStoreConfig判断使用CSS的插件模式和非插件模式。如果配置了embedding模型,则使用非插件模式,否则使用插件模式。注意,在非插件模式下,vectorFields有且只有1个。 父主题: Memory(记忆)
定个2点-4点的会议 助手: - 步骤1: 思考:好的,请问您想预定哪一个会议室? 由于缺少参数,因此模型开始追问,此时构造了用户消息,回答了模型追问的问题。可以通过AgentSession的状态来判断是否是追问闲聊,或是发起工具调用,此时AgentSession的状态为F
本生成、文学创作等),通常希望生成的文本有一点的多样性,建议在保证不过于随机的基础上,增大“温度”或“核采样”的值(二者选其一调整)。若发现生成的文本过于发散,可以降低“话题重复度控制”的值,保证内容统一;反之若发现内容过于单一,甚至出现了复读机式的重复内容生成,则需要增加“话题重复度控制”的值。
深的领域背景知识,那么通用模型可能无法满足这些要求,需要在该领域的数据集上进行微调,以增强模型的泛化能力。 回答的风格或格式有特殊要求:虽然通用模型学习了相当可观的基础知识,但如果目标任务要求回答必须符合特定的风格或格式,这将造成和基础知识的数据分布差异。例如,需要模型使用某银行
提示工程介绍 提示工程是一项将知识、技巧和直觉结合的工作,需要通过不断实践实现模型输出效果的提升。提示词和模型之间存在着密切关系,本指南结合了大模型通用的提示工程技巧以及盘古大模型的调优实践经验,总结的一些技巧和方法更为适合基于盘古大模型的提示工程。 本文的方法论及技巧部分使用了较
通过vectorStoreConfig判断使用CSS的插件模式和非插件模式,如果配置了embedding模型,则使用非插件模式;否则使用插件模式。注意,在非插件模式下,vectorFields有且只有1个。 父主题: Memory(记忆)
权限管理 如果您需要为企业员工设置不同的访问权限,以实现对华为云上购买的盘古大模型资源的权限隔离,可以使用统一身份认证服务(IAM)和盘古角色管理功能进行精细的权限管理。 如果华为云账号已经能满足您的要求,不需要创建独立的IAM用户(子用户)进行权限管理,可以跳过本章节,不影响您使用服务的其他功能。
文档问答 基于已有的知识库进行回答。有stuff、refine和map-reduce策略。 Stuff:将所有文档直接填充到prompt中,提给模型回答,适合文档较少的场景。 from pangukitsappdev.api.embeddings.factory import Embeddings
与其他云服务的关系 与对象存储服务的关系 盘古大模型使用对象存储服务(Object Storage Service,简称OBS)存储数据和模型,实现安全、高可靠和低成本的存储需求。 与ModelArts服务的关系 盘古大模型使用ModelArts服务进行算法训练部署,帮助用户快速创建和部署模型。
创建子用户并授权使用盘古 如果您需要对华为云上购买的盘古资源,为企业中的员工设置不同的访问权限,以达到不同员工之间的权限隔离,您可以使用统一身份认证服务(IAM)并结合盘古大模型套件平台提供的“角色管理”功能实现精细的权限管理。 如果华为云账号已经能满足您的要求,不需要创建独立的
计费说明 计费项 关于盘古大模型的详细费用信息,敬请咨询华为云售前咨询,我们将为您提供专业的解答和支持。 盘古NLP大模型分为模型订阅服务、训练服务和推理服务三个收费项。 模型订阅服务和推理服务按调用时长计费,时长精确到秒。 训练服务按实际消耗的Tokens数量计费,话单周期内的Tokens计算精确到1K
"caption":"xx","relation_operator":"xx"}]} 步骤4.综合以上内容和json格式,输出json 微调数据清洗: 如下提供了该场景实际使用的数清洗策略,供您参考: 判断数据中的JSON结构是否符合预先定义的接口结构。 异常数据示例如下: {"context": "…"
Agent(智能代理) Agent(智能代理),用于对复杂任务的自动拆解与外部工具调用执行,一般包括任务规划、记忆系统、执行系统: 任务规划:将复杂目标任务分解为小的可执行子任务,通过评估、自我反思等方式提升规划成功率。 记忆系统:通过构建记忆模块去管理历史任务和策略,并让Age
当出现第三方库冲突的时,如Jackson,okhttp3版本冲突等。可以引入如下bundle包(3.0.40-rc版本后),该包包含所有支持的服务和重定向了SDK依赖的第三方软件,避免和业务自身依赖的库产生冲突: <dependency> <groupId>com.huaweicloud
如何调整训练参数,使模型效果最优 模型微调参数的选择没有标准答案,不同的场景,有不同的调整策略。一般微调参数的影响会受到以下几个因素的影响: 目标任务的难度:如果目标任务的难度较低,模型能较容易的学习知识,那么少量的训练轮数就能达到较好的效果。反之,若任务较复杂,那么可能就需要更多的训练轮数。
Agent(智能代理) Agent(智能代理),用于对复杂任务的自动拆解与外部工具调用执行,一般包括任务规划、记忆系统和执行系统。 任务规划:将复杂目标任务分解为小的可执行子任务,通过评估、自我反思等方式提升规划成功率。 记忆系统:通过构建记忆模块去管理历史任务和策略,并让Age
print(f"{retrieved_tools}, {query}") return retrieved_tools 上述tool_provider中,实现了provide接口,可以利用工具检索的返回动态构建出工具列表,同时也可以加一些后处理工作,例如根据黑白名单做工具的过滤。 与上述的tool_
从而生成有用的表示,可用于后续任务。它无需额外的人工标签数据,因为监督信号直接从数据本身派生。 有监督学习 有监督学习是机器学习任务的一种。它从有标记的训练数据中推导出预测函数。有标记的训练数据是指每个训练实例都包括输入和期望的输出。 LoRA 局部微调(LoRA)是一种优化技
log.info("{} {}", query, retrievedTools); } } 其中,toolProvider中实现了provide接口,可以利用工具检索的返回动态构建出工具列表,同时也可以加一些后处理工作,如根据黑白名单做工具的过滤。 与上述的toolPr
cache.clear() 参数解释:用于设置缓存对象的一些基本信息,如过期时间、session_tag等。 expire_after_access: int # 缓存失效策略-基于访问后到期时间(支持inMemeory缓存) expire_after_write: int #