检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
csv --backend:服务类型,如tgi,vllm,mindspore、openai。 --host ${docker_ip}:服务部署的IP地址,${docker_ip}替换为宿主机实际的IP地址。 --port:推理服务端口。 --dataset:数据集路径。 --dataset-type:支持三种
弹性文件服务(Scalable File Service,SFS)提供按需扩展的高性能文件存储(NAS),可以在裸金属服务器中通过网络协议挂载使用,SFS支持NFS和CIFS的网络协议。在使用裸金属服务器时, 将数据放在SFS盘中, 并发建立多个NFS链接、并发的读写数据、做大模型训练。 但有时候会出
见Step6 购买Cluster资源。 查看节点列表 当您想查看某一节点池下的节点相关信息,可单击操作列的“节点列表”,可查询节点的名称、规格及可用区。 更新节点池 当您想更新节点池配置时,可单击操作列的“更新”,相关参数介绍请参见Step6 购买Cluster资源。 需注意,更
Standard专属资源池、自动学习、Workflow、Notebook、训练作业、在线/批量/边缘服务 ModelArts Lite Cluster资源池 ModelArts弹性集群Server ModelArts Studio(MAAS) 对象存储(系统盘和数据盘) 计费因子:存储容量、存储类型和时长收费。
Notebook里使用)。 debug 在ECS上调试SWR镜像是否能在ModelArts Notebook中使用 (只支持已安装docker环境的ECS)。 使用ma-cli image get-template命令查询镜像构建模板 ma-cli提供了一些常用的镜像构建模板,模板中包含了在ModelArts
--block-size:PagedAttention的block大小,推荐设置为128。 --host=${docker_ip}:服务部署的IP,${docker_ip}替换为宿主机实际的IP地址。 --port:服务部署的端口。 --gpu-memory-utilizati
参数类型 说明 engine String 部署引擎,当前仅支持CCE。 params Object 部署参数,当前仅支持Docker,如表8所示。 表8 Docker部署参数数据结构说明 参数 参数类型 说明 namespace String SWR组织名称,全局唯一。 image_name
启动作业命令如下。首先会根据config.yaml创建pod,继而在pod容器内自动启动训练作业。 kubectl apply -f config.yaml 启动后,可通过以下命令获取所有已创建的pod信息。若pod已全部启动,则状态为:Running。 kubectl get pod -A -o wide
启动作业命令如下。首先会根据config.yaml创建pod,继而在pod容器内自动启动训练作业。 kubectl apply -f config.yaml 启动后,可通过以下命令获取所有已创建的pod信息。若pod已全部启动,则状态为:Running。 kubectl get pod -A -o wide
启动作业命令如下。首先会根据config.yaml创建pod,继而在pod容器内自动启动训练作业。 kubectl apply -f config.yaml 启动后,可通过以下命令获取所有已创建的pod信息。若pod已全部启动,则状态为:Running。 kubectl get pod -A -o wide
_AK"] __SK = os.environ["HUAWEICLOUD_SDK_SK"] # 如果进行了加密还需要进行解密操作 session = Session(access_key=__AK, secret_key=__SK, project_id='***', region_name='***')
--block-size:PagedAttention的block大小,推荐设置为128。 --host=${docker_ip}:服务部署的IP,${docker_ip}替换为宿主机实际的IP地址。 --port:服务部署的端口。 --gpu-memory-utilizati
启动作业命令如下。首先会根据config.yaml创建pod,继而在pod容器内自动启动训练作业。 kubectl apply -f config.yaml 启动后,可通过以下命令获取所有已创建的pod信息。若pod已全部启动,则状态为:Running。 kubectl get pod -A -o wide
启动作业命令如下。首先会根据config.yaml创建pod,继而在pod容器内自动启动训练作业。 kubectl apply -f config.yaml 启动后,可通过以下命令获取所有已创建的pod信息。若pod已全部启动,则状态为:Running。 kubectl get pod -A -o wide
启动作业命令如下。首先会根据config.yaml创建pod,继而在pod容器内自动启动训练作业。 kubectl apply -f config.yaml 启动后,可通过以下命令获取所有已创建的pod信息。若pod已全部启动,则状态为:Running。 kubectl get pod -A -o wide
启动作业命令如下。首先会根据config.yaml创建pod,继而在pod容器内自动启动训练作业。 kubectl apply -f config.yaml 启动后,可通过以下命令获取所有已创建的pod信息。若pod已全部启动,则状态为:Running。 kubectl get pod -A -o wide
启动作业命令如下。首先会根据config.yaml创建pod,继而在pod容器内自动启动训练作业。 kubectl apply -f config.yaml 启动后,可通过以下命令获取所有已创建的pod信息。若pod已全部启动,则状态为:Running。 kubectl get pod -A -o wide
String 部署类型,当前仅支持Docker。 spec Object 部署详情,如表8所示。 表8 spec字段数据结构说明 参数 参数类型 说明 engine String 部署引擎,当前仅支持CCE。 params Object 部署参数,当前仅支持Docker,如表9所示。 表9 Docker部署参数数据结构说明
启动作业命令如下。首先会根据config.yaml创建pod,继而在pod容器内自动启动训练作业。 kubectl apply -f config.yaml 启动后,可通过以下命令获取所有已创建的pod信息。若pod已全部启动,则状态为:Running。 kubectl get pod -A -o wide
--block-size:PagedAttention的block大小,推荐设置为128。 --host=${docker_ip}:服务部署的IP,${docker_ip}替换为宿主机实际的IP地址。 --port:服务部署的端口。 --gpu-memory-utilizati