检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
demo.sh方式启动(历史版本) 本章节介绍历史版本的训练任务启动方式。6.3.912版本同时兼容历史版本的训练任务启动方式。 步骤一:上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件、自定义数据集,可以忽略此步骤。 未上传训练权重文件,具体参考上传代码和权重文件到工作环境。
断点续训和故障快恢说明 相同点 断点续训(Checkpointing)和故障快恢都是指训练中断后可从训练中一定间隔(${save-interval})保存的模型(包括模型参数、优化器状态、训练迭代次数等)继续训练恢复,而不需要从头开始。 不同点 断点续训:可指定加载训练过程中生成
于配置训练作业开始时需要输入数据的路径和训练结束后输出数据的路径。 输入指定的目录在训练开始时,平台会自动将指定的OBS路径下的文件copy到容器内 输出指定的目录在训练过程中,平台会自动将容器内的文件copy到指定的OBS路径下 在“输入”框内设置超参配置:dataset、pr
在运行finetune_ds.sh 时遇到报错 在运行finetune_ds.sh 时遇到报错 pydantic_core._pydantic_core.ValidationError: 1 validation error for DeepSpeedZeroConfig sta
mc2融合算子报错 Yi-34B、Qwen1.5系列、GLM4-9B模型执行lora微调策略任务时产生mc2融合算子错误。 图1 mc2融合算子错误 解决方法 修改代码文件:AscendFactory/scripts_modellink/{model_name}/3_training
附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 基于vLLM(v0.5.0)部署推理服务时,不同模型推理支持的最小昇腾卡数和对应卡数下的max-model-len长度说明,如下面的表格所示。 以下值是在gpu-memory-utilization为0.9时测试得出,为服
语言模型推理性能测试 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,且输入输出长度也在
附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 基于vLLM(v0.6.0)部署推理服务时,不同模型推理支持的最小昇腾卡数和对应卡数下的max-model-len长度说明,如下面的表格所示。 以下值是在gpu-memory-utilization为0.9时测试得出,为服
附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 基于vLLM(v0.6.0)部署推理服务时,不同模型推理支持的最小昇腾卡数和对应卡数下的max-model-len长度说明,如下面的表格所示。 以下值是在gpu-memory-utilization为0.9时测试得出,为服
附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 基于vLLM(v0.5.0)部署推理服务时,不同模型推理支持的最小昇腾卡数和对应卡数下的max-model-len长度说明,如下面的表格所示。 以下值是在gpu-memory-utilization为0.9时测试得出,为服
mc2融合算子报错 Yi-34B、Qwen1.5系列、GLM4-9B模型执行lora微调策略任务时产生mc2融合算子错误。 图1 mc2融合算子错误 解决方法 修改代码文件:AscendFactory/scripts_modellink/{model_name}/3_training
附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 基于vLLM(v0.6.3)部署推理服务时,不同模型推理支持的最小昇腾卡数和对应卡数下的max-model-len长度说明,如下面的表格所示。 以下值是在gpu-memory-utilization为0.9时测试得出,为服
附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 基于vLLM(v0.6.3)部署推理服务时,不同模型推理支持的最小昇腾卡数和对应卡数下的max-model-len长度说明,如下面的表格所示。 以下值是在gpu-memory-utilization为0.9时测试得出,为服
PD分离部署使用说明 什么是PD分离部署 大模型推理是自回归的过程,有以下两阶段: Prefill阶段(全量推理) 将用户请求的prompt传入大模型,进行计算,中间结果写入KVCache并推出第1个token,属于计算密集型。 Decode阶段(增量推理) 将请求的前1个tok
各模型支持的最小卡数和最大序列 基于vLLM(v0.6.3)部署推理服务时,不同模型推理支持的最小昇腾卡数和对应卡数下的max-model-len长度说明,如下面的表格所示。 以下值是在gpu-memory-utilization为0.9时测试得出,为服务部署所需的最小昇腾卡数及
mc2融合算子报错 Yi-34B、Qwen1.5系列、GLM4-9B模型执行lora微调策略任务时产生mc2融合算子错误。 图1 mc2融合算子错误 解决方法 修改代码文件:AscendFactory/scripts_modellink/{model_name}/3_training
在运行finetune_ds.sh 时遇到报错 在运行finetune_ds.sh 时遇到报错 pydantic_core._pydantic_core.ValidationError: 1 validation error for DeepSpeedZeroConfig sta
准备Notebook(可选) 本步骤为可选操作。ModelArts Notebook云上云下,无缝协同,更多关于ModelArts Notebook的详细资料请查看开发环境介绍。 本案例中,如果用户有自定义开发的需要,比如查看和编辑代码、数据预处理、权重转换等操作,可通过Note
和下载失败。资源池打通公网配置请参见配置Standard专属资源池访问公网,ECS打通公网配置请参见ECS绑定弹性公网IP。 在华为公有云平台申请的资源一般默认连通网络,如未连通网络或无法git clone下载代码时用户则需要找到已连通网络的机器(本章节以Linux系统机器为例)
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 数据集下载 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以