检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
离线计算规格。 nearline String 实时计算规格。 rank String 深度学习计算规格。 online_tps Integer 在线服务最大并发数。 请求示例 查询场景详情 /v2.0/testuuidxxxxxxxxxxxxxxxxxxxxxxxx/workspace
nearline 否 String 实时计算规格。 rank 否 String 深度学习计算规格。 online_tps 否 Integer 在线服务最大并发数。 响应参数 状态码: 200 表6 响应Body参数 参数 参数类型 描述 is_success Boolean 是否成功。
使用于在线服务,为用户生成推荐列表。当作业“状态”变为“计算失败”时,您可以单击作业的名称,进入详情页面,通过查看日志等手段处理问题。 逻辑斯蒂回归-LR 逻辑斯蒂回归算法是一种广义的线性回归分析模型,常用于数据挖掘、疾病自动诊断、经济预测等领域。逻辑斯蒂回归算法通过在线性回归的
离线排序作业名称(在线训练任务需要提供此参数)。 update_interval Integer 更新周期(在线训练任务需要提供此参数)。 optimizer Optimizer object 优化器(在线训练任务需要提供此参数)。 flows Flow object 在线流程(在线训练任务需要提供此参数)。
用户在使用特征工程之前,需要提供一份全局的特征信息文件,后续的特征工程、在线模块都会用到该文件。 文件数据信息请参见全局特征信息文件。 当上传的数据中的特征有变化时,用户需要同步更新该文件。该文件为JSON格式,包含特征名、特征大类、特征值类型。 保留已有宽表 对结果保存路径中已有宽表数据的保留方式: 否,不保留任何已有的数据。
数据质量检测日志的保存路径。包括错误数据输出及定位等。 全局特征信息文件 用户在使用数据质量检测算子之前,需要提供一份全局的特征信息文件,后续的特征工程、排序算法、在线服务都会用到该文件。全局特征信息文件需要和画像中字段一致,其中BASIC_INFO为画像表中定义的基本属性字段,TAGS为画像表中定义的带
nearline 否 String 实时计算规格。 rank 否 String 深度学习计算规格。 online_tps 否 Integer 在线服务最大并发数。 响应参数 状态码: 200 表7 响应Body参数 参数 参数类型 描述 is_success Boolean 是否成功。
nearline 否 String 实时计算规格。 rank 否 String 深度学习计算规格。 online_tps 否 Integer 在线服务最大并发数。 表5 DataConfig 参数 是否必选 参数类型 描述 offline 是 Offline object 离线计算规格。
有排序服务正在运行,无法修改排序模型训练规格 请检查是否有排序服务正在运行。 400 RES.1206 Datasource Error 有在线服务正在运行,无法修改在线并发规格 请检查是否有在线服务正在运行。 400 RES.3004 Basic Error 数据库资源模型配置出错 请联系管理员检查数据库模型配置。
离线计算规格。 nearline String 实时计算规格。 rank String 深度学习计算规格。 online_tps Integer 在线服务最大并发数。 请求示例 查询当前工作空间下的数据源 /v2.0/testuuidxxxxxxxxxxxxxxxxxxxxxxxx/wo
解决组合特征稀疏的问题。FM算法参数请参见因子分解机。 域感知因子分解机是因子分解机的改进版本,因子分解机每个特征对其他域的隐向量都一致,而域感知因子分解机每个特征对其他每个域都会学习一个隐向量,能够达到更高的精度,但也更容易出现过拟合。FFM算法参数请参见域感知因子分解机。 深
actionType String 行为类型: 物品曝光 用户点击物品 用户收藏了某个物品 用户取消收藏某个物品 用户点击搜索结果中的物品 用户对物品的评论 分享 点赞 点衰 评分 消费 观看视频/听音乐/阅读 是 actionMeasure String 发生行为的度量,金额,评分,次数(整数)等。
的key和value之间用\003(ASCII值)分隔,多值枚举型属性的不同值之间以\004(ASCII值)分隔,kv数值型属性的不同键值对同样以\004(ASCII值)分隔,每一个键值对内部用冒号(:)将键和值分隔。 基本格式:k1\003v1\002k2\003v2\k3\0
job_description 否 String 作业描述,最大长度256字符。 online_services 是 List 需要进行效果评估的在线服务; indicators 是 List 请参见表3,需要统计的指标列表及其对应的参数。 start_time 是 Long 被统计数据的起始时间戳。
物品数据字段描述 字段名 类型 描述 是否必选 itemId String 全局唯一物品ID。 是 itemType String 物品的类型,可用于对推荐结果集的多样性控制。包含: item article video audio image 是 category String 物品的类别
基于用户的协同过滤推荐采用经典算法基于用户的协同过滤(UserCF)进行召回。基于用户的协同过滤算法是通过用户的历史行为数据发现用户对物品的喜欢(如购买,收藏,内容评论或分享),并对这些喜好进行度量和打分。根据不同用户对相同物品的态度和偏好程度计算用户之间的关系。在有相同喜好的用户间进行物品推荐。 例如,A、B两个
用户匹配物品 物品匹配用户 用户自匹配 物品自匹配 用户匹配物品 匹配特征对 用户和物品相关联特征。请根据实际情况配置参数,如果属性匹配特征对相似度较高内存不够时需提升配置。您可以单击进入“添加匹配特征对”页面进行配置。设置特征对的别名、根据全局特征信息文件匹配用户特征名和物品特征名,设置权重。
1],默认值为0.001。 在线学习(ftrl) 初始梯度累加和 (initial_accumulator_value) 是 Double 用来动态调整学习步长。取值范围(0,1],默认值为0.1。 L1正则项系数(lambda1) 是 Double 叠加在模型的1范数之上,用来对模型值进行限制防止过拟合。取值范围[0