检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
使用AI市场物体检测YOLOv3_Darknet53算法训练后部署在线服务报错 问题现象 使用AI市场物体检测YOLOv3_Darknet53算法进行训练,将数据集切分后进行部署在线服务报错,日志如下:TypeError: Cannot interpret feed_dict key
使用自动分组智能标注作业 为了提升智能标注算法精度,可以均衡标注多个类别,有助于提升智能标注算法精度。ModelArts内置了分组算法,您可以针对您选中的数据,执行自动分组,提升您的数据标注效率。 自动分组可以理解为数据标注的预处理,先使用聚类算法对未标注图片进行聚类,再根据聚类结果进行处理
查询单个智能标注样本的信息 功能介绍 查询单个智能标注样本的信息。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v2/{project_id}/datasets
查询智能标注的样本列表 功能介绍 查询数据集中智能标注的样本列表。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v2/{project_id}/datasets
确认智能标注作业的数据难例 在数据量很大的标注任务中,标注初期由于已标注图片不足,智能标注的结果无法直接用于训练。如果对所有的未标注数据一一进行调整确认仍然需要较大的人力和时间成本。为了更快地完成标注任务,在对未标注数据进行智能标注的任务中,ModelArts嵌入了自动难例发现功能
None 服务介绍 ModelArts产品 产品介绍 03:19 了解什么是ModelArts ModelArts自动学习 视频介绍 02:59 ModelArts自动学习简介 ModelArts CodeLab 视频介绍 04:16 ModelArts CodeLab介绍 JupyterLab
基于MaaS DeepSeek API和Dify快速构建网站智能客服 本文介绍如何使用MaaS(大模型即服务平台)的免费Token额度的满血版DeepSeek-R1 API接入Dify(开源Agent平台),快速构建AI对话机器人并将其嵌入在网页页面中。当免费Token额度用完后,
在ModelArts中智能标注完成后新加入数据需要重新训练吗? 智能标注完成后,需要对标注结果进行确认。 如果未确认标注结果,直接加入新数据,重新智能标注,会将待确认的数据和新加入的数据全部重新训练。 如果确认标注结果后,再加入新数据,只重新训练标注新的数据。 父主题: Standard
基于MaaS DeepSeek API和Cherry Studio快速构建个人AI智能助手 本文介绍如何使用Cherry Studio调用部署在ModelArts Studio上的DeepSeek模型,构建个人AI助手。 背景介绍 Cherry Studio是一款开源的多模型桌面客户端
服务韧性 韧性特指安全韧性,即云服务受攻击后的韧性,不含可靠性、可用性。本章主要阐述ModelArts服务受入侵的检测响应能力、防抖动的能力、域名合理使用、内容安全检测等能力。 安全防护套件覆盖和使用堡垒机,增强入侵检测和防御能力 ModelArts服务部署主机层、应用层、网络层和数据层的安全防护套件
ModelArts中常用概念 自动学习 自动学习功能可以根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型,不需要代码编写和模型开发经验。只需三步,标注数据、自动训练、部署模型,即可完成模型构建。 端-边-云 端-边-云分别指端侧设备、智能边缘设备、公有云。 推理 指按某种策略由已知判断推出新判断的思维过程
Qwen-VL基于Lite Server适配PyTorch NPU的Finetune训练指导(6.3.912) Qwen-VL是规模视觉语言模型,可以以图像、文本、检测框作为输入,并以文本和检测框作为输出。具有强大的性能、多语言对话、多图交错对话、支持中文开放域定位、细粒度识别和理解等特点
数据标注场景介绍 由于模型训练过程需要大量有标签的数据,因此在模型训练之前需对没有标签的数据添加标签。您可以通过创建单人标注作业或团队标注作业对数据进行手工标注,或对任务启动智能标注添加标签,快速完成对图片的标注操作,也可以对已标注图片修改或删除标签进行重新标注。 ModelArts
Qwen-VL基于Lite Server适配PyTorch NPU的推理指导(6.3.909) Qwen-VL是规模视觉语言模型,可以以图像、文本、检测框作为输入,并以文本和检测框作为输出。具有强大的性能、多语言对话、多图交错对话、支持中文开放域定位、细粒度识别和理解等特点。 本文档主要介绍如何利用训练框架
Cluster资源池节点故障如何定位 故障说明和处理建议 图1 Lite池故障处理流程 对于ModelArts Lite资源池,每个节点会以DaemonSet方式部署node-agent组件,该组件会检测节点状态,并将检测结果写到K8S NodeCondtition中。同时,节点故障指标默认会上报到
导出ModelArts数据集中的数据到OBS 针对数据集中的数据,用户可以选中部分数据或者通过条件筛选出需要的数据,当需要将数据集中的数据存储至OBS用于后续导出使用时,可通过此种方式导出成新的数据集。用户可以通过任务历史查看数据导出的历史记录。 目前只有“图像分类”、“物体检测”
创建标注任务 基于数据集创建标注任务。 dataset.create_label_task(self, task_name=None, task_type=None, **kwargs) 示例代码 示例一:基于图像类型的数据集创建物体检测标注任务。 from modelarts.session
日志提示“label_map.pbtxt cannot be found” 问题现象 使用目标检测算法训练时,训练作业日志运行出现如下报错:ERROR:root:label_map.pbtxt cannot be found. It will take a long time to
在ModelArts自动学习中模型训练图片异常怎么办? 使用自动学习的图像分类或物体检测算法时,标注完成的数据在进行模型训练后,训练结果为图片异常。针对不同的异常情况说明及解决方案参见表1。 表1 自动学习训练中图片异常情况说明(图像分类和物体检测) 序号 图片异常显示字段 图片异常说明
Standard数据管理 ModelArts Standard数据管理提供了一套高效便捷的管理和标注数据框架。支持图片、文本、语音、视频等多种数据类型,涵盖图像分类、目标检测、音频分割、文本分类等多个标注场景,适用于计算机视觉、自然语言处理、音视频分析等AI项目场景。 ModelArts