检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
的金桥203会议室。 用户: 再定一个明天8点到9点的会议室 助手: 好的,请问您希望预定哪个会议室? - 步骤1 答复:好的,请问您希望预定哪个会议室? 用户: 同一个会议室 助手: 已经成功为您预定了2023年6月23日早上8点到9点的金桥203会议室。 - 步骤1:
终的执行结果: 用户: 帮我定个今天下午3点到8点的A02会议室 助手: A02会议室在今天下午3点到8点已经被预定了。是否需要为您预定其他时间段或者其他会议室? - 步骤1: 思考:好的,我需要先查询A02会议室今天下午3点到8点的预定状态。使用meeting_room
AI助手是一种基于NLP大模型构建的人工智能应用,它通过结合多种工具并利用大模型的对话问答、规划推理、逻辑判断等能力,来理解和回应用户的需求。 例如,需要构建一个企业助理应用,该应用需要具备预定会议室、创建在线文档和查询报销信息等功能。在构建此应用时,需要将预定会议室与创建在线文档等功能的AP
Agent(智能代理) Agent(智能代理),用于对复杂任务的自动拆解与外部工具调用执行,一般包括任务规划、记忆系统、执行系统: 任务规划:将复杂目标任务分解为小的可执行子任务,通过评估、自我反思等方式提升规划成功率。 记忆系统:通过构建记忆模块去管理历史任务和策略,并让Age
Agent(智能代理) Agent(智能代理),用于对复杂任务的自动拆解与外部工具调用执行,一般包括任务规划、记忆系统和执行系统。 任务规划:将复杂目标任务分解为小的可执行子任务,通过评估、自我反思等方式提升规划成功率。 记忆系统:通过构建记忆模块去管理历史任务和策略,并让Age
训练智能客服系统大模型需要考虑哪些方面 根据智能客服场景,建议从以下方面考虑: 根据企业实际服务的场景和积累的数据量,评估是否需要构建行业模型,如电商、金融等。 根据每个客户的金牌客服话术,可以对对话模型进行有监督微调,进一步优化其性能。 根据每个客户的实际对话知识,如帮助文档、
// 查找工具 List<Tool> result = cssToolRetriever.search("预订会议室", 2); 返回的result中,包含与预订会议室最相关的工具。搜索支持topK和阈值2个参数,例如上例指定topK=2,则最多返回2个工具。 从ToolRetriever中删除工具:
"reserve_meeting_room", toolDesc = "预订会议室", toolPrinciple = "请在需要预订会议室时调用此工具", inputDesc = "会议开始结束时间,会议室", outPutDesc = "预订会议室的结果") public class ReserveMeetingRoom
金的使用情况中,如何防止出现损失、浪费和管理不善的情况?在社会建设专项资金的使用情况中,应规范操作,加强管理,及时纠正和化解建设过程中的解释、调取和留置问题,严防管理漏洞,保证应用资金的安全性和真实性。同时,应建立完善的监管机制,严格管理,加强监督,加强专项资金使用情况的评估,加
从ToolRetriever中查找工具: # 查找工具 result = css_tool_retriever.search("预订会议室", 2) 返回的result中,包含与预订会议室最相关的工具。搜索支持topK和阈值2个参数,例如上例指定topK=2,则最多返回2个工具。 从ToolRetriever中删除工具:
", toolDesc = "预定会议室", toolPrinciple = "请在需要预定会议室时调用此工具,预定前需要先查询会议室状态", inputDesc = "会议开始结束时间,会议室", outPutDesc = "预定会议室的结果") public class
"tool_id": "reserve_meeting_room", "tool_desc": "预定会议室,请在需要预定会议室时调用此工具,预定前需要先查询会议室状态", "input_schema": { "type": "object", "properties":
意图匹配 应用场景说明:智能客服系统中,大模型将客户问题匹配至语义相同的FAQ问题标题,并返回标题内容,系统根据匹配标题调出该FAQ问答对,来解答客户疑问。 父主题: 写作示例
"帮我定个今天下午3点到8点金桥2303会议室" } ] } ], "assistant_running_param": { "instructions": "你是一个会议室预定助手,可以帮助员工预定会议室", "additional_instructions":
Tool分为StaticTool(静态工具)和DynamicTool(动态工具)两类,静态工具需要开发者事先定义好,即在编译期定义与实例化;动态工具开发者可以在系统运行时动态构建,即在运行态定义与实例化。 StaticTool(静态工具) 静态工具可以通过继承Tool的方式新增,在_run接口中实现工具的功能,例如:
StaticTool<GetReimbursementLimitTool.InputParam, String> { 父主题: Agent(智能代理)
}); 上述例子中,当满足if判断条件时,会直接终止Agent的执行,且finalAnswer被设置为工具的原始返回值。 父主题: Agent(智能代理)
k, tool_stream_callback) StreamCallBack的实现与定义与LLM的回调完全相同。 父主题: Agent(智能代理)
*/ MESSAGE_COMPLETED("session.message.completed"); 父主题: Agent(智能代理)
build()) .build()); Agent agent = new ReactAgent(llm); 父主题: Agent(智能代理)