检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
训练中的权重转换说明 以 llama2-13b 举例,运行 0_pl_pretrain_13b.sh 脚本。脚本同样还会检查是否已经完成权重转换的过程。 若已完成权重转换,则直接执行预训练任务。若未进行权重转换,则会自动执行 scripts/llama2/2_convert_mg_hf
训练tokenizer文件说明 在训练开始前,需要针对模型的tokenizer文件进行修改,不同模型的tokenizer文件修改内容如下,您可在创建的Notebook中对tokenizer文件进行编辑。 Yi模型 在使用Yi模型的chat版本时,由于transformer 4.3
支持的模型列表 表1 支持的大语言模型列表和权重获取地址 序号 模型名称 是否支持fp16/bf16推理 是否支持W4A16量化 是否支持W8A8量化 是否支持W8A16量化 是否支持 kv-cache-int8量化 开源权重获取地址 1 llama-7b √ √ √ √ √ https://huggingface
分离部署 PD分离部署使用说明 PD分离部署性能调优理论基础 PD分离部署手动配比调优(推荐) PD分离部署自动配比调优 PD分离性能调优工具使用说明 父主题: 推理关键特性使用
投机推理 投机推理使用说明 Eagle投机小模型训练 父主题: 推理关键特性使用
预训练数据处理 训练前需要对数据集进行预处理,转化为.bin和.idx格式文件,以满足训练要求。 Alpaca数据处理说明 数据预处理脚本preprocess_data.py存放在代码包的“llm_train/AscendSpeed/ModelLink/tools”目录中,脚本样
多模态 什么是多模态 多模态(Multimodality)是集成和处理两种或两种以上不同类型的信息或数据的方法和技术。具体来说,在机器学习和人工智能领域,多模态涉及的数据类型通常包括但不限于文本、图像、视频、音频和传感器数据。 多模态的主要目标是利用来自多种模态的信息来提升任务的
SFT微调数据处理 SFT微调(Supervised Fine-Tuning)前需要对数据集进行预处理,转化为.bin和.idx格式文件,以满足训练要求。 这里以Qwen-14B为例,对于Qwen-7B和Qwen-72B,操作过程与Qwen-14B相同,只需修改对应参数即可。 下载数据
训练tokenizer文件说明 在训练开始前,需要针对模型的tokenizer文件进行修改,不同模型的tokenizer文件修改内容如下,您可对tokenizer文件进行编辑。 LLama2模型 在当前的软件版本中,由于transformers的版本过高(transformers==4
图模式 什么是PTA图模式 PTA图模式使用TorchAir框架(继承自PyTorch框架Dynamo模式)在昇腾NPU上进行图模式推理,可达到最大化消除算子下发瓶颈的目的。推荐在小模型以及MOE模型的场景开启PTA图模式,如Qwen2-1.5B,Qwen2-0.5B,mixtr
多模态 什么是多模态 多模态(Multimodality)是集成和处理两种或两种以上不同类型的信息或数据的方法和技术。具体来说,在机器学习和人工智能领域,多模态涉及的数据类型通常包括但不限于文本、图像、视频、音频和传感器数据。 多模态的主要目标是利用来自多种模态的信息来提升任务的
训练tokenizer文件说明 在训练开始前,需要针对模型的tokenizer文件进行修改,不同模型的tokenizer文件修改内容如下,您可在创建的Notebook中对tokenizer文件进行编辑。 Yi模型 在使用Yi模型的chat版本时,由于transformer 4.3
ECS中构建新镜像 通过ECS获取和上传基础镜像获取基础镜像后,可通过ECS运行Dockerfile文件,在镜像的基础上构建新镜像。 Step1 构建新ModelArts Standard训练镜像 获取模型软件包,并上传到ECS的目录下(可自定义路径),获取地址参考表1。 解压A
训练图像分类模型 完成图片标注后,可进行模型的训练。模型训练的目的是得到满足需求的图像分类模型。请参考前提条件确保已标注的图片符合要求,否则数据集校验将会不通过。 前提条件 请确保您的数据集中的已标注的图片不低于100张。 请确保您的数据集中至少存在2种以上的图片分类,且每种分类的图片不少于5张。
创建文本分类项目 ModelArts自动学习,包括图像分类、物体检测、预测分析、声音分类和文本分类项目。您可以根据业务需求选择创建合适的项目。您需要执行如下操作来创建自动学习项目。 创建项目 登录ModelArts管理控制台,在左侧导航栏单击“开发空间>自动学习”,进入新版自动学习页面。
在JupyterLab中使用MindInsight可视化作业 ModelArts支持在开发环境中开启MindInsight可视化工具。在开发环境中通过小数据集训练调试算法,主要目的是验证算法收敛性、检查是否有训练过程中的问题,方便用户调测。 MindInsight能可视化展现出训
在JupyterLab中使用TensorBoard可视化作业 ModelArts支持在开发环境中开启TensorBoard可视化工具。TensorBoard是TensorFlow的可视化工具包,提供机器学习实验所需的可视化功能和工具。TensorBoard能够有效地展示训练过程中
Workflow多分支运行介绍 当前支持两种方式实现多分支的能力,条件节点只支持双分支的选择执行,局限性较大,推荐使用配置节点参数控制分支执行的方式,可以在不添加新节点的情况下完全覆盖ConditionStep的能力,使用上更灵活。 构建条件节点控制分支执行主要用于执行流程的条件
网卡名称错误 当训练开始时提示网卡名称错误。或者通信超时。可以使用ifconfig命令检查网卡名称配置是否正确。 比如,ifconfig看到当前机器IP对应的网卡名称为enp67s0f5,则可以设置环境变量指定该值。 export GLOO_SOCKET_IFNAME=enp67s0f5
ECS中构建新镜像 通过ECS获取基础镜像获取基础镜像后,可通过ECS运行Dockerfile文件,在镜像的基础上构建新镜像。 Step1 构建新ModelArts Standard训练镜像 获取模型软件包,并上传到ECS的目录下(可自定义路径),获取地址参考表1。 解压Asce