检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
应的评估数据集。 提示词变量是一种可以在文本生成中动态替换的占位符,用于根据不同的场景或用户输入生成不同的内容。其中,变量名称可以是任意的文字,用于描述变量的含义或作用。 提示词评估数据集约束限制 上传文件限xlsx格式。 数据行数不小于10行,不大于50行。 数据不允许相同表头,表头数量小于20个。
Long 预报未来小时数,默认168。如需预报未来30天,可将此参数设置成720。 draw_figures 否 String 是否输出结果图片,取值true/false,默认true。 forecast_features 否 String 确定性预报的输出要素,例如“Surface:U;1000:T;800:
式、自定义格式,可按需进行数据集格式转换。 默认格式:平台默认的格式。 盘古格式:训练盘古大模型时,需要进行数据集格式转换。当前仅文本类、图片类数据集支持转换为盘古格式。 自定义格式:文本类数据集可以使用自定义脚本进行数据格式转换。 父主题: 使用数据工程准备与处理数据集
单击“确定”,完成参数配置。 连接大模型组件和其他组件。 配置意图识别组件 意图识别组件用于根据用户的输入进行分类并导向后续不同的处理流程。 意图识别组件一般位于工作流前置位置。在对用户的输入进行意图识别时,意图识别组件会通过大模型推理,匹配用户输入与开发者预先定义的描述类别的关键字,并根据匹配结果流向对应处理流程。
起报时间间隔小时数,默认6。 forecast_lead_hours Long 预报未来小时数,默认168。 draw_figures String 是否输出结果图片,取值true/false,默认true。 forecast_features String 确定性预报的输出要素,例如“Surface:U;1000:T;800:
调测评估等特点。 能力扩展:平台可以集成多种插件,插件能够有效扩展Agent的能力边界。、 内置插件:平台集成了各种类型的插件,包含搜索、图片理解等。支持开发者直接将插件添加到Agent中,丰富Agent的能力。 自定义插件:平台支持开发者创建自定义插件。支持开发者将工具、Fun
基于上述功能,平台还提供了灵活的工作流设计功能,支持用户编写少量代码来构建逻辑复杂、稳定性要求高的Agent应用。通过拖拉拽方式,开发者可以组合各种组件(如LLM、代码、意图识别等),快速搭建工作流,实现更高效的应用开发。 父主题: 产品功能
平台支持发布的数据集格式为默认格式、盘古格式,可按需进行数据集格式转换。 默认格式:平台默认的格式。 盘古格式:训练盘古大模型时,需要进行数据集格式转换。当前仅文本类、图片类数据集支持转换为盘古格式。 NLP大模型开发流程 ModelArts Studio大模型开发平台提供了NLP大模型的全流程开发支持,涵盖
要应用这些技巧来输出一个逻辑自洽、清晰明了的指令。 提示词是什么 提示词也称为Prompt,是与大模型进行交互的输入,可以是一个问题、一段文字描述或者任何形式的文本输入。 提示词要素 指令:要求模型执行的具体任务或回答的问题。如:“写一篇关于勇士的小说”、“天空为什么是蓝色的?”
请求消息体 请求消息体通常以结构化格式发出,与请求消息头中Content-Type对应,传递除请求消息头之外的内容。若请求消息体中参数支持中文,则中文字符必须为UTF-8编码。 每个接口的请求消息体内容不同,也并不是每个接口都需要有请求消息体(或者说消息体为空),GET、DELETE操作类
什么是提示词工程 提示词工程简介 提示词工程(Prompt Engineering)是一个较新的学科,应用于开发和优化提示词(Prompt),帮助用户有效地将大语言模型用于各种应用场景和研究领域。掌握提示词工程相关技能将有助于用户更好地了解大语言模型的能力和局限性。 提示词工程不
使用推理SDK 安装SDK 使用SDK前,需要安装“huaweicloud-sdk-core”和“huaweicloud-sdk-pangulargemodels”。 请在SDK中心获取最新的sdk包版本,替换示例中版本。 表1 安装推理SDK SDK语言 安装方法 Java 在
查看NLP大模型训练状态与指标 模型启动训练后,可以在模型训练列表中查看训练任务的状态,单击任务名称可以进入详情页查看训练指标、训练任务详情和训练日志。 查看模型训练状态 在模型训练列表中查看训练任务的状态,各状态说明详见表1。 表1 训练状态说明 训练状态 训练状态含义 已发布
大模型开发基本流程介绍 大模型(Large Models)通常指的是具有海量参数和复杂结构的深度学习模型,广泛应用于自然语言处理(NLP)等领域。开发一个大模型的流程可以分为以下几个主要步骤: 数据集准备:大模型的性能往往依赖于大量的训练数据。因此,数据集准备是模型开发的第一步。
导入数据至盘古平台 数据集是一组用于处理和分析的相关数据样本。存储在OBS服务中的数据或本地数据导入ModelArts Studio大模型开发平台后,将以数据集的形式进行统一管理。 用户将数据导入至平台后,这些数据会生成一个“原始数据集”,用于对导入的数据进行集中管理和进一步操作。
创建盘古NLP大模型SFT任务 场景描述 此示例演示了如何从头创建SFT(有监督微调)训练任务。通过该示例,您将了解以下内容: 如何将数据导入平台并进行数据加工、标注和评估操作。 如何创建SFT训练任务并配置训练参数,以提升文本理解和生成的质量。 如何执行模型的压缩和部署操作。 准备工作
提示词写作常用方法论 打基础 先制定一个能够明确表达主题的提示词(若模型训练时包含相似任务,可参考模型训练使用的提示词),再由简至繁,逐步增加细节和说明。打好基础是后续提示词优化的前提,基础提示词生成效果差,优化只会事倍功半。 例如,文学创作类可以使用“请创作一个关于{故事主题}
打造短视频营销文案创作助手 场景介绍 随着互联网的发展,短视频已成为了日常生活中不可或缺的一部分,凭借其独特的形式和丰富的内容吸引了大量流量,并为企业和个人提供了一个全新的营销平台。短视频用户希望借助大模型快速生成高质量的口播文案,以提升营销效果和效率。在这种场景下,用户只需提供