已找到以下 86 条记录
产品选择
推荐系统 RES
没有找到结果,请重新输入
产品选择
推荐系统 RES
产品选择
没有找到结果,请重新输入
  • RES自定义策略 - 推荐系统 RES

    自定义策略样例。 RES自定义策略样例 示例1:拒绝用户删除作业 拒绝策略需要同时配合其他策略使用,否则没有实际作用。用户被授予的策略中,一个授权项的作用如果同时存在Allow和Deny,则遵循Deny优先原则。 如果您给用户授予RES FullAccess的系统策略,但不希望用户拥有RES

  • 分词模型 - 推荐系统 RES

    选择功能,该功能指定为"keywords"。 响应消息 响应参数请参见表2。 表2 响应参数说明 参数名称 是否必选 参数类型 说明 result 是 String 一个由抽取出来的无序的关键词集合生成的字符串,以空格连接。 示例 请求示例 { "mode":"keywords", "title":[

  • 通过DLF重新执行作业 - 推荐系统 RES

    推荐系统提供了重新执行作业的API,用来将任务以相同的配置重新执行一次,实现对离线任务生成结果的更新。以固定的周期定时调用此API,可保持结果处于一个较新的状态,以获得更好的推荐结果。 以上功能,我们也可以使用数据治理中心 DataArts Studio,通过拖拽的方式完成配置。具体操作步骤如下:

  • 召回策略 - 推荐系统 RES

    置调度的时间间隔。 基于UCB的召回策略 基于UCB的召回策略综合考虑了用户操作行为表中,物品发生的某几种行为类型及次数,然后给每一个物品都计算一个得分,最终返回得分最高的若干个物品。 表8 基于UCB的召回策略参数说明 参数名称 说明 名称 策略名称,由中文、英文、数字、下划线

  • 数据探索是什么?近线实时数据如何在数据探索中的报告体现? - 推荐系统 RES

    数据探索是针对当前数据源的数据进行挖掘和分析,主要聚焦在特征的分布范围、统计以及特征齐全度等,使用户能够更了解数据,进而指导在特征工程以及相关算法的配置。 数据探索是一个离线分析任务,任务有对应的启动时间,由于近线实时数据会实时入库,因此可以通过定时执行数据探索任务来覆盖增量数据。 父主题: 数据源

  • 数据探索 - 推荐系统 RES

    数据探索是针对当前数据源的数据进行挖掘和分析,主要聚焦在特征的分布范围、统计以及特征齐全度等,使用户能够更了解数据,进而指导在特征工程以及相关算法的配置。 数据探索是一个离线分析任务,任务有对应的启动时间,由于增量数据会实时入库,因此可以通过定时执行数据探索任务来覆盖增量数据。 操作步骤 在“执行步骤”页签

  • 创建离线数据源 - 推荐系统 RES

    创建离线数据源 在使用RES之前,首先您需要创建一个数据源,后续的操作,如修改数据源、创建自定义推荐,都是基于您创建的数据源进行的。 前提条件 已创建用于存储数据的OBS桶及文件夹,并且数据存储的OBS桶与RES在同一区域。 需要使用的数据已上传至OBS。 创建数据源 登录RES

  • API概览 - 推荐系统 RES

    查询当前推荐系统所提供的离线计算规格,实时计算规格和排序模型训练规格。在创建数据源和场景时,需要提供此信息。 数据源 创建数据源 在指定的工作空间下面创建一个新的数据源。 查询数据源列表 查询当前工作空间下的数据源列表。 查询数据源详情 查询指定数据源的详情信息。 修改数据源内容 修改指定数据源的配置内容。

  • 创建在线服务 - 推荐系统 RES

    回类型为物品或者用户,配置在线召回特征。在线召回的特征属性来自于公共配置的全局特征信息文件。 可单击“添加推荐候选集、添加在线候选集”配置多个候选集,作为当前在线流程的排序候选集。 说明: 在线候选集的延迟较推荐候选集较高,如无特殊需求,建议选择推荐候选集。 容错 容错用于数据请

  • 权限管理 - 推荐系统 RES

    、资源以及请求条件等。基于策略的授权是一种更加灵活的授权方式,能够满足企业对权限最小化的安全管控要求。例如:针对ECS服务,管理员能够控制IAM用户仅能对某一类云服务器资源进行指定的管理操作。多数细粒度策略以API接口为粒度进行权限拆分,RES支持的API授权项请参见《权限策略和授权项》。

  • 召回策略 - 推荐系统 RES

    use:观看视频/听音乐/阅读。 您可以单击“增加行为权重”,新增一个行为权重。通过和来自定义权重大小。 单击可以删除对应行的行为权重。 物品曝光 1.0 最小行为次数 在物品上产生过行为的最小用户数,其中一个用户在一个物品上只计算一次行为。 30 折中参数 令alpha为Exploration

  • 数据结构 - 推荐系统 RES

    的数据格式。经过数据质量检测来确保数据的合法性。 数据结构介绍 数据结构步骤的主要目的是读取用户上传的离线数据,解析用户特征和物品特征中每一个属性的数据格式、统计所有行为,然后保存解析生成的数据格式。 前提条件 已按照创建离线数据源操作指导完成数据源的创建。 操作步骤 登录RES

  • 获取推荐结果 - 推荐系统 RES

    产品。如果物品项有多个,需要用英文逗号隔开。 图1 代码预测 表单:输入“ID”,并设置“最大推荐个数”。其中ID可以为用户ID或者物品ID,单击“预测”后显示预测结果,如图2所示。如果是关联推荐,则需要配置“物品项”,即推荐与物品项相关的产品。如果物品项有多个,需要用英文逗号隔开。

  • 计费说明 - 推荐系统 RES

    应用于物品画像和用户画像的存储计费,对用户和物品的总条目数统计进行收费。 每个数据源默认规格最低是一百万条,如果一个数据源中的用户和物品总条目数不超过100W条,则按照100W条计费,如果超过一百万条,每一百万条为一个计算周期。 计算资源 应用于召回、排序等作业运行时CPU/GPU计算,包含RES的数据源、推荐场景的离线作业计算计费。

  • 排序策略 - 推荐系统 RES

    分解后的表示特征的向量的长度。默认10。 神经网络结构 神经网络的层数与每一层的神经元节点个数。默认400,400,400。 激活函数 神经网络中的激活函数,将一个(或一组)神经元的值映射为一个输出值。 relu tanh sigmoid 神经元值保留概率 神经网络前向传播过程中以该概率保留神经元的值。默认0.8。 保存根路径

  • 获取访问密钥并添加RES全局配置 - 推荐系统 RES

    Id字段内容。 私有访问密钥(SK):输入密钥文件中Secret Access Key字段内容。 在添加AK/SK前,需要在OBS至少创建一个桶,否则会校验失败。具体操作请参见创建OBS桶。 请确保所填写的AK、SK为当前账号所获取的。 如果您添加访问密钥时,提示“上传的AK/S

  • 在线服务 - 推荐系统 RES

    认召回策略推荐数量,同优先级下的数据占比之和需要等于100%。 权重:根据权重加权融合计算多个召回候选集融合。分数计算规则:每个策略的所占权重和物品在每个召回候选集中所得的分数加权融合,多个策略中相同的物品会进行分数累加。权重大小之和要等于1。 过滤(黑名单) 离线过滤 对离线过

  • 提交特征工程作业 - 推荐系统 RES

    单值枚举型(string):字符串型,每一个值都被当做是字符串来进行处理,大部分的特征值都属于这种类型; 单值数值型(numerical):每一个值都是一个数值,一般需要对这种类型的特征值进行离散化处理以降低特征维度; 多值枚举型(strArray):字符串数组型,每一个特征值都是一个不定长的字符串数组

  • 自定义场景(热度推荐) - 推荐系统 RES

    将“test-data”文件夹下的所有文件上传至准备工作中您创建的OBS路径下。 步骤2:创建离线数据源 数据下载并上传至OBS后,您需要创建一个数据源用于后续的计算。具体操作步骤如下: 登录RES管理控制台,在左侧菜单栏中选择“数据源”,进入“数据源”列表页面。 单击“创建”,在创

  • 提交排序任务API - 推荐系统 RES

    中的某一个。 algorithm_parameters 是 JSON 每个算法有其各自的参数列表,包括初始化、最优化、正则项等参数。 逻辑斯蒂回归算法是一种广义的线性回归分析模型,常用于数据挖掘、疾病自动诊断、经济预测等领域。逻辑斯蒂回归算法通过在线性回归的基础上叠加一个sigmoid激活函数将输出值映射到[0