内容选择
全部
内容选择
内容分类
  • 学堂
  • 博客
  • 论坛
  • 开发服务
  • 开发工具
  • 直播
  • 视频
  • 用户
时间
  • 一周
  • 一个月
  • 三个月
  • 深度学习简介

    近年来,研究人员也逐渐将这几类方法结合起来,如对原本是以有监督学习为基础的卷积神经网络结合自编码神经网络进行监督的预训练,进而利用鉴别信息微调网络参数形成的卷积深度置信网络。与传统的学习方法相比,深度学习方法预设了更多的模型参数,因此模型训练难度更大,根据统计学习的一般规律知道,模型参数越多,需要参与训练的数据量也越大。

    作者: 某地瓜
    1681
    1
  • 基于对比学习和对抗微调的监督专家链接框架

    专家发现是线上学术平台Expertise Finder, Linkedin,AMiner等所提供的一个热门服务,它可以帮助政府或者相关企业寻找合适的研究专家,专业顾问以及项目候选人等。专家发现服务的质量取决于平台专家信息来源的多样性以及专家画像的完整性,但现有的学术平台往往只拥有单一来源的专家信息,例如:Google

    作者: 可爱又积极
    1744
    6
  • 深度学习之“深度

    经网络这一术语来自于神经生物学,然而,虽然深度学习的一些核心概念是从人们对大脑的理解中汲取部分灵感而形成的,但深度学习模型不是大脑模型。没有证据表明大脑的学习机制与现代深度学习模型所使用的相同。你可能会读到一些流行科学的文章,宣称深度学习的工作原理与大脑相似或者是根据大脑的工作原

    作者: ypr189
    1571
    1
  • 感知相比监督学习

    人类需要各种感知能力来积累奖励,例如分辨朋友和敌人,开车时进行场景解析等。这可能需要多种感知模式,包括视觉、听觉、嗅觉、躯体感觉和本体感觉。 相比于监督学习,从奖励最大化的角度考虑感知,最终可能会支持更广泛的感知行为,包括如下具有挑战性和现实形式的感知能力:动作和观察通常交织在多种感知形式中

    作者: QGS
    423
    0
  • 监督学习入门

    学习的核心是如何给输入数据自动生成标签,就是提出一个新的自动打标签的前置任务(例如:旋转图片、打乱patch顺序),自动生成标签。正文:自监督学习源于监督学习,解决从未标记的数据中学习语义特征的问题。常用的方法是通过设计一个前置将监督的问题转换为有监督的任务。 往往前置任务

    作者: qinggedada
    8052
    34
  • 【转载】监督学习

    作者: andyleung
    619
    1
  • 浅谈深度学习

    学习方法——深度前馈网络、卷积神经网络、循环神经网络等;监督学习方法——深度信念网、深度玻尔兹曼机,深度自编码器等。深度学习的思想:深度神经网络的基本思想是通过构建多层网络,对目标进行多层表示,以期通过多层的高层次特征来表示数据的抽象语义信息,获得更好的特征鲁棒性。深度学习应用

    作者: QGS
    39
    2
  • 深度学习概念

    深度学习概念 深度学习(Deep Learning, DL)由Hinton等人于2006年提出,是机器学习(MachineLearning, ML)的一个新领域。 深度学习被引入机器学习使其更接近于最初的目标----人工智能(AI,Artificial Intelligence)

    作者: QGS
    973
    3
  • 深度学习

    全面地讲述深度学习的历史超出了本书的范围。然而,一些基本的背景对理解深度学习是有用的,深度学习经历了三次发展浪潮:20世纪40年代到60年代深度学习的雏形出现在控制论(cybernetics)中,20世纪80年代到90年代深度学习表现为联结主义(connectionism),直到

    作者: QGS
    965
    4
  • 深度学习之多任务学习

    地泛化。展示了多任务学习中非常普遍的一种形式,其中不同的监督任务(给定 x预测 y(i))共享相同的输入 x 以及一些中间层表示 h(share),能学习共同的因素池。该模型通常可以分为两类相关的参数:多任务学习深度学习框架中可以以多种方式进行,该图说明了任务共享相同输入但涉及

    作者: 小强鼓掌
    532
    1
  • 深度学习之流形学习

    少量点的子集构成的一组流形中,而学习函数中感兴趣输出的变动只位于流形中的方向,或者感兴趣的变动只发生在我们从一个流形移动到另一个流形的时候。流形学习是在连续数值数据和监督学习的设定下被引入的,尽管这个概率集中的想法也能够泛化到离散数据和监督学习的设定下:关键假设仍然是概率质量高度集中。

    作者: 小强鼓掌
    1676
    3
  • 深度学习

    加智能。借助深度学习,我们可以制造出具有自动驾驶能力的汽车和能够理解人类语音的电话。由于深度学习的出现,机器翻译、人脸识别、预测分析、机器作曲以及无数的人工智能任务都成为可能,或相比以往有了显著改进。虽然深度学习背后的数学概念几十年前便提出,但致力于创建和训练这些深度模型的编程库

    作者: G-washington
    2443
    1
  • 机器学习——深度学习(Deep Learning)

    Learning是机器学习中一个非常接近AI的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,最近研究了机器学习中一些深度学习的相关知识,本文给出一些很有用的资料和心得。 Key Words:有监督学习监督学习,分类、回归,密度估计、聚类,深度学习,Sparse DBN,

    作者: 格图洛书
    发表时间: 2021-12-29 16:20:46
    631
    0
  • 机器学习监督学习理解整理

            监督学习简单可以理解为:学生从老师那里获取知识、信息,老师提供对错指示、告知最终答案。学生在学习过程中借助老师的提示获得经验、技能,最后对没有学习过的问题也可以做出正确解答。在监督学习中,我们只需要给定输入样本集,机器就可以从中推演出指定目标变量的可能结果。机器只

    作者: 建赟
    1024
    2
  • 学习笔记|EM算法的导出及其在监督学习中的应用

    上式等价于EM算法的一次迭代,即求Q函数及其极大化(可参见学习笔记|EM算法介绍)。EM算法是通过不断求解下界的极大化逼近求解对数似然函数极大化的算法。 2. EM算法在监督学习中的应用 参考文献 1.统计学习方法(第2版),李航著,清华大学出版社

    作者: darkpard
    发表时间: 2021-12-21 10:59:07
    710
    0
  • 深度学习

    使用深度学习方法处理计算机视觉问题的过程类似于人类的学习过程:我们搭建的深度学习模型通过对现有图片的不断学**结出各类图片的特征,最后输出一个理想的模型,该模型能够准确预测新图片所属的类别。图1-2展示了两个不同的学习过程,上半部分是通过使用深度学习模型解决图片分类问题,下半部分

    作者: 生命无价
    1555
    1
  • 深度学习之流形学习

    少量点的子集构成的一组流形中,而学习函数中感兴趣输出的变动只位于流形中的方向,或者感兴趣的变动只发生在我们从一个流形移动到另一个流形的时候。流形学习是在连续数值数据和监督学习的设定下被引入的,尽管这个概率集中的想法也能够泛化到离散数据和监督学习的设定下:关键假设仍然是概率质量高度集中。

    作者: 小强鼓掌
    1053
    2
  • 深度学习应用开发》学习笔记-03

    监督学习监督学习,半监督学习,强化学习。强化学习说的非常厉害,适用于下棋和游戏这一类领域,基本逻辑是正确就奖励,错误就惩罚来做一个学习。那么监督学习的典型应用模式是什么呢?说出来之后你就会觉得监督学习没有那么神秘了,那就是聚类。一个比较典型的例子就是超市里货架商品摆放,

    作者: 黄生
    1332
    6
  • 深度学习之流形学习

    少量点的子集构成的一组流形中,而学习函数中感兴趣输出的变动只位于流形中的方向,或者感兴趣的变动只发生在我们从一个流形移动到另一个流形的时候。流形学习是在连续数值数据和监督学习的设定下被引入的,尽管这个概率集中的想法也能够泛化到离散数据和监督学习的设定下:关键假设仍然是概率质量高

    作者: 小强鼓掌
    813
    1
  • 深度学习是什么?

    学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。 深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的效果,远远超过先前相关技术。深度学习在搜索技术,数据挖掘,机器学习

    作者: QGS
    821
    2