检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
使用Notebook进行AI开发调试 Notebook使用场景 创建Notebook实例 通过JupyterLab在线使用Notebook实例进行AI开发 通过PyCharm远程使用Notebook实例 通过VS Code远程使用Notebook实例 通过SSH工具远程使用Notebook
正常”。 单击新建的模型名称左侧的小三角形,展开模型的版本列表。在操作列单击“部署 > 在线服务”,跳转至在线服务的部署页面。 在部署页面,参考如下说明填写关键参数。 “名称”:自定义一个在线服务的名称,也可以使用默认值。 “资源池”:选择“公共资源池”。 “模型来源”和“选择模型及版本”:会自动选择模型和版本号。
服务管理 服务管理概述 在开发环境中部署本地服务进行调试 部署在线服务 查询服务详情 推理服务测试 查询服务列表 查询服务对象列表 更新服务配置 查询服务监控信息 查询服务日志 删除服务
止或删除的时间为准。 实例具体如下: 因运行自动学习作业,而创建的对应的训练作业和在线服务。 因运行Workflow工作流,而创建的对应的训练作业和在线服务。 Notebook实例 训练作业 在线服务 例如,您在8:45:30购买了一个按需计费的专属资源池,相关资源为计算资源(v
Diffusion WebUI如何适配。 AI推理应用运行在昇腾设备上一般有两种方式: 方式1:通过Ascend PyTorch,后端执行推理,又称在线推理。 方式2:通过模型静态转换后,执行推理,又称离线推理。 通常为了获取更好的推理性能,推荐使用方式2的离线推理。下文将以Diffusers
配置CES云监控和SMN消息通知使用权限。ModelArts推理部署的在线服务详情页面内有调用次数详情,单击可查看该在线服务的调用次数随时间详细分布的情况。如果想进一步通过CES云监控查看ModelArts的在线服务和对应模型负载运行状态的整体情况,需要给子账号授予CES权限。 如果只是查看监控,给子账号授予CES
期为“按账期”,您也可以设置其他统计维度和周期,详细介绍请参见流水与明细账单。 查看在线服务的账单 ModelArts在线服务查询资源账单首先需要获取资源名称,而ModelArts控制台展示的在线服务名称与账单中上报的资源名称不一致,您需要先了解资源名称的查询方法,以及资源名称与
ModelArts标注的数据存储在OBS中。 自动训练 训练作业结束后,其生成的模型存储在OBS中。 部署上线 ModelArts将存储在OBS中的模型部署上线为在线服务。 AI全流程开发 数据管理 数据集存储在OBS中。 数据集的标注信息存储在OBS中。 支持从OBS中导入数据。 开发环境 Noteb
ModelArts标注的数据存储在OBS中。 自动训练 训练作业结束后,其生成的模型存储在OBS中。 部署上线 ModelArts将存储在OBS中的模型部署上线为在线服务。 AI全流程开发 数据管理 数据集存储在OBS中。 数据集的标注信息存储在OBS中。 支持从OBS中导入数据。 开发环境 Noteb
如高性能计算、媒体处理、文件共享和内容管理和Web服务等。 说明: 高性能计算:主要是高带宽的需求,用于共享文件存储,比如基因测序、图片渲染这些。 如大数据分析、静态网站托管、在线视频点播、基因测序和智能视频监控等。 如高性能计算、企业核心集群应用、企业应用系统和开发测试等。 说明: 高性能计算:主要是高速率、高IO
见将AI Gallery中的模型部署为AI应用。 发布后的资产,可通过微调大师训练模型和在线推理服务部署模型,具体可参见使用AI Gallery微调大师训练模型、使用AI Gallery在线推理服务部署模型。 图1 AI Gallery使用流程 AI Gallery也支持管理从M
发布和管理AI Gallery镜像 发布和管理AI Gallery中的AI应用 使用AI Gallery微调大师训练模型 使用AI Gallery在线推理服务部署模型 Gallery CLI配置工具指南 计算规格说明
model:/home/mind/model custom_engine:v1 该指令无法完全模拟线上,主要是由于-v挂载进去的目录是root权限。在线上,模型文件从OBS下载到/home/mind/model目录之后,文件owner将统一修改为ma-user。 在本地机器上启动另一个终端
finished:只有批量服务会有这个状态,表示运行完成。 stopping: 停止中。 deleting: 删除中。 pending: 待启动,仅在线有这个状态。 waiting: 资源排队中,仅在线服务有这个状态。 offset 否 Integer 分页列表的起始页,默认为0。 limit 否 Integer
支持3条。 “部署类型” 选择此模型支持部署服务的类型,部署上线时只支持部署为此处选择的部署类型,例如此处只选择在线服务,那您导入后只能部署为在线服务。当前支持“在线服务”、“批量服务”和“边缘服务”。 确认信息填写无误,单击“立即创建”,完成模型的创建。 在模型列表中,您可以查
不同Region支持的AI引擎不一样,请以控制台实际界面为准。 亮点特性4:提供在线的交互式开发调试工具JupyterLab ModelArts集成了基于开源的JupyterLab,可为您提供在线的交互式开发调试。您无需关注安装配置,在ModelArts管理控制台直接使用Not
Standard训练作业:用户在运行训练作业时,可以查看训练作业占用的CPU、GPU或NPU资源使用情况。具体请参见训练资源监控章节。 Standard在线服务:用户将模型部署为在线服务后,可以通过监控功能查看该推理服务的CPU、内存或GPU等资源使用统计信息和模型调用次数统计,具体参见查看推理服务详情章节。
04-x86_64 request_mode Array of strings 请求模式,AI引擎支持部署为同步在线服务或异步在线服务。 sync:同步在线服务 async:异步在线服务 accelerators Array of Accelerator objects AI引擎可使用的加速卡。
步骤六:预测分析 运行完成的工作流会自动部署相应的在线服务,您只需要在相应的服务详情页面进行预测即可。 在服务部署节点单击“实例详情”或者在ModelArts管理控制台,选择“模型部署 > 在线服务”,单击生成的在线服务名称,即可进入在线服务详情页。 在服务详情页,单击选择“预测”页签。
步骤六:预测分析 运行完成的工作流会自动部署相应的在线服务,您只需要在相应的服务详情页面进行预测即可。 在服务部署节点单击“实例详情”或者在ModelArts管理控制台,选择“模型部署 > 在线服务”,单击生成的在线服务名称,即可进入在线服务详情页。 在服务详情页,单击选择“预测”页签。