已找到以下 105 条记录
AI智能搜索
产品选择
推荐系统 RES
没有找到结果,请重新输入
产品选择
推荐系统 RES
在搜索结果页开启AI智能搜索
开启
产品选择
没有找到结果,请重新输入
  • 避免物品重复推荐(曝光过滤) - 推荐系统 RES

    参考数据源管理进行创建。 配置“在线服务”参数 如果用户已经创建自定义场景,可以直接修改“在线服务”相关参数。 选择已经创建的自定义场景,单击名称,进入到自定义场景详情页。 单击已经创建的在线服务名称下面的“编辑”,进入编辑页面。 图1 修改在线服务参数 修改“过滤(黑名单)”下面的参数。

  • 推荐结果多样性打散 - 推荐系统 RES

    配置“在线服务”参数 如果用户已经创建自定义场景,可以直接修改“在线服务”相关参数。 选择已经创建的自定义场景,单击名称,进入到自定义场景详情页。 单击已经创建的在线服务名称下面的“编辑”,进入编辑页面。 图1 修改在线服务参数 打开高级选项,进行打散功能的配置,选取相应的属性即可完成配置。 “高级类型”:选择“打散”。

  • 自定义场景(热度推荐) - 推荐系统 RES

    召回策略成功,继续单击“下一步”,跳过可选步骤过滤策略和排序策略,进入“在线服务”页面,进行在线服务的配置。 在“在线服务”配置页面,进行在线流程配置,配置完成后单击“创建并完成”。 “在线流程”:自定义在线流程名称,此样例命名为“hot-flow”。 “推荐候选集”:选择步骤3

  • 自定义场景关闭后,为什么会自动启动? - 推荐系统 RES

    自定义场景关闭后,为什么会自动启动? 在创建自定义场景时,如果设置了自动召回策略,且此召回策略关联了在线服务,就会自动运行场景实例。用户可关闭召回策略,或者在在线服务中删除依赖的这个策略。 父主题: 自定义场景

  • 创建自定义场景 - 推荐系统 RES

    排序策略-近线排序策略 近线排序策略用于对在线实时数据排序。如果使用在线排序模型,需在排序策略-近线特征工程中创建完成后才可以正常使用排序策略。 在“创建自定义场景”页面,进入“排序策略”页签,单击“添加近线排序策略”。 进行在线学习参数配置。 名称:自定义在线排序策略名称。 离线排序策略:

  • ModelArts - 推荐系统 RES

    推荐系统对离线数据进行质量检测,然后将检测合格的数据通过特征工程处理为可用于召回策略、过滤规则、排序策略、近线策略的数据。通过上述作业训练出可用于在线服务的推荐候选集。当在线作业运行完成,您可以通过效果评估检测推荐结果。 使用推荐系统 推荐系统操作流程 准备工作 创建华为云账号 进行服务授权 数据源 准备离线数据

  • 排序策略-离线排序模型 - 推荐系统 RES

    Logistic Regression (LR) LR算法是一种广义的线性回归分析模型,常用于数据挖掘、疾病自动诊断、经济预测等领域。LR算法通过在线性回归的基础上叠加一个sigmoid激活函数将输出值映射到[0,1]之间,是机器学习领域里常用的二分类算法。 表1 逻辑斯蒂回归参数说明 参数名称

  • 约束与限制 - 推荐系统 RES

    约束与限制 您能创建的在线服务的数量与配额有关系,具体请参见关于配额。 更详细的限制请参见具体API的说明。 父主题: 使用前必读

  • 近线作业 - 推荐系统 RES

    窗口间隔(秒) 近线策略处理的窗口间隔,单位为秒,10代表每隔10s进行一次算。 10s。 算子参数 在线服务名:使用的在线服务的名称。该在线服务需满足前提条件的要求。 流程名:在线服务对应的在线流程名称。 异常数据输出路径:单击右侧的按钮,选择数据在OBS中的存放路径,此路径下会记录不符合任务要求的输入数据。

  • 构造请求 - 推荐系统 RES

    请求消息体 请求消息体通常以结构化格式发出,与请求消息头中Content-type对应,传递除请求消息头之外的内容。若请求消息体中参数支持中文,则中文字符必须为UTF-8编码。 每个接口的请求消息体内容不同,也并不是每个接口都需要有请求消息体(或者说消息体为空),GET、DELETE操作类

  • 提交流式训练作业 - 推荐系统 RES

    online_job_uuid 是 String 关联的在线服务的uuid。 flow_name 是 String 关联在线服务的其中一个在线流程的名称。流式训练作业所需的行为参数、模型文件路径、数据预处理信息等参数会从指定的在线服务的在线流程中获取。 online_training_config

  • 购买套餐包 - 推荐系统 RES

    功能包括:数据源。 在线服务:用于推荐系统在线推理,获得最终推荐结果。 套餐介绍 计算资源分为“计算型CPU(1U4G)实例”、“计算型GPU(P100)实例”、“计算型GPU(V100)实例”3种类型。存储资源支持“画像存储(一百万)”。在线服务支持“在线并发9000TPS-时

  • 效果评估 - 推荐系统 RES

    式。 数据时间范围 被统计数据的起始时间和终止时间。 统计间隔(天) 统计间隔,以天为单位,每隔多少天计算一次指标,大于0。 在线服务 选择已发布的在线服务进行推荐效果指标计算。 结果保存路径 效果评估结果在OBS的文件输出路径。 指标 推荐服务效果评估指标,通过指标后的下拉框选

  • 全局特征信息文件 - 推荐系统 RES

    全局特征信息文件 在特征工程、在线模块,近线模块时都会用到该全局的特征信息文件。当上传的数据中的特征有变化时,用户需要同步更新该文件。该文件为JSON格式,包含特征名、特征大类、特征值类型。 表1 全局特征信息文件字段描述 字段名 类型 描述 是否必选 user_features

  • 权限和授权项 - 推荐系统 RES

    res:job:get √ √ 新建在线服务 POST /v2.0/{project_id}/workspaces/{workspace_id}/resources/{resource_id}/service-instance res:job:add √ √ 查询在线服务详情 GET /v2

  • 过滤规则 - 推荐系统 RES

    读取配置源文件来进行离线计算。 资源名,指定DLI运行作业的资源规格。 存储平台 服务名称,CloudTable作为存储平台,用于用户推荐在线数据和推荐候选集的存储。 集群名称,选择“资源中心”绑定的CloudTable集群名称。 表名,存储的表格名称。 过滤规则别名 自定义过滤

  • 什么是推荐系统 - 推荐系统 RES

    场景式推荐 提供多维度的场景推荐,含猜你喜欢、关联推荐、热门推荐,一键式操作,降低客户接入门槛。 近线处理能力 支持实时数据的接入和更新、模型在线学习,近线处理实时训练兴趣模型。 全面的推荐实体 支持以用户推荐物品、以用户推荐用户、以物品推荐物品、以物品推荐用户四种全面的推荐对象,用户根据场景选择不同的推荐实体。

  • 自定义场景简介 - 推荐系统 RES

    略生成的候选集进行重排序,得到推荐候选集列表。 排序策略-离线排序模型 在线服务 在线服务用来做线上推荐时的应用,每个服务之间是独立的。即根据不同的离线计算得到的候选集以及相关参数,提供不同的推荐服务。 在线服务 效果评估 指用于通过推荐系统推荐出去的结果集并利用trace_id

  • 产品功能 - 推荐系统 RES

    基于用户历史行为计算物品相似性,实时更新候选列表,提升用户体验,提高转化率支持多种召回、过滤、排序算子自由组合,训练形式上支持离线批处理、近线流处理、在线实时处理的三种数据处理方式,提供完备的一站式推荐平台,可快速设置运营规则进行AB测试。 功能优势: 全开放推荐流程,用户根据业务自定义推荐流程。

  • 排序策略 - 推荐系统 RES

    使用于在线服务,为用户生成推荐列表。当作业“状态”变为“计算失败”时,您可以单击作业的名称,进入详情页面,通过查看日志等手段处理问题。 逻辑斯蒂回归-LR 逻辑斯蒂回归算法是一种广义的线性回归分析模型,常用于数据挖掘、疾病自动诊断、经济预测等领域。逻辑斯蒂回归算法通过在线性回归的