检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
1024。 测试方法:gpu-memory-utilization为0.9下,以4k、8k、16k递增max-model-len,直至达到能执行静态benchmark下的最大max-model-len。 表1 基于vLLM不同模型推理支持最小卡数和最大序列说明 序号 模型名 32GB显存
1024。 测试方法:gpu-memory-utilization为0.9下,以4k、8k、16k递增max-model-len,直至达到能执行静态benchmark下的最大max-model-len。 表1 基于vLLM不同模型推理支持最小卡数和最大序列说明 序号 模型名 32GB显存
1024。 测试方法:gpu-memory-utilization为0.9下,以4k、8k、16k递增max-model-len,直至达到能执行静态benchmark下的最大max-model-len。 表1 基于vLLM不同模型推理支持最小卡数和最大序列说明 序号 模型名 32GB显存
1024。 测试方法:gpu-memory-utilization为0.9下,以4k、8k、16k递增max-model-len,直至达到能执行静态benchmark下的最大max-model-len。 表1 基于vLLM不同模型推理支持最小卡数和最大序列说明 序号 模型名 32GB显存
1024。 测试方法:gpu-memory-utilization为0.9下,以4k、8k、16k递增max-model-len,直至达到能执行静态benchmark下的最大max-model-len。 表1 基于vLLM不同模型推理支持最小卡数和最大序列说明 序号 模型名 32GB显存
1024。 测试方法:gpu-memory-utilization为0.9下,以4k、8k、16k递增max-model-len,直至达到能执行静态benchmark下的最大max-model-len。 表1 基于vLLM不同模型推理支持最小卡数和最大序列说明 序号 模型名 32GB显存
query-string 查询参数,可选,查询参数前面需要带一个“?”,形式为“参数名=参数取值”,例如“limit=10”,表示查询不超过10条数据。 例如您需要获取“华北-北京一”区域的Token,则需使用“华北-北京一”区域的Endpoint(iam.cn-north-1.myhuaweicloud
本的软件包,请严格遵照版本配套关系使用本文档。 推理部署使用的服务框架是vLLM。vLLM支持v0.5.0版本。 仅支持FP16和BF16数据类型推理。 本案例仅支持在专属资源池上运行。 专属资源池驱动版本要求23.0.6。 支持的模型列表和权重文件 本方案支持vLLM的v0.5
开头的名称。 如何修改环境变量 用户可以在创建训练作业页面增加新的环境变量,也可以设置新的取值覆盖当前训练容器中预置的环境变量值。 为保证数据安全,请勿输入敏感信息,例如明文密码。 训练容器中预置的环境变量 训练容器中预置的环境变量如下面表格所示,包括表1、表2、表3、表4、表5、表6、表7。
在“所在区”选择计算规格所在的区域。默认显示全部区域的计算规格。 选择计算规格不可用的资源会置灰。右侧“配置信息”区域会显示计算规格的详细数据,AI Gallery会基于资产和资源情况分析该任务是否支持设置“商品数量”,用户可以基于业务需要选择任务所需的资源卡数。 在“运行时长控制”选择是否指定运行时长。
ry CLI配置工具下载文件。 获取待下载的文件名 在AI Gallery页面的资产详情页,如果是模型资产,则选择“模型文件”页签,如果是数据集资产,则选择“文件版本”页签,获取“文件名称”。 下载单个文件 在服务器执行如下命令,可以从AI Gallery仓库下载单个文件到服务器的缓存目录下。
s,--privileged,--cap-add的启动命令,在模型发布时将会置空。 “apis定义” 提供模型对外Restfull api数据定义,用于定义模型的输入、输出格式。apis定义填写规范请参见模型配置文件编写说明中的apis参数说明,示例代码请参见apis参数代码示例。
Sequential() from keras.layers import Dense import tensorflow as tf # 导入训练数据集 mnist = tf.keras.datasets.mnist (x_train, y_train),(x_test, y_test)
和指导可参考Bert。 图1 任务示意图 操作步骤 拉取镜像。本测试镜像为bert_pretrain_mindspore:v1,已经把测试数据和代码打进镜像中。 docker pull swr.cn-southwest-2.myhuaweicloud.com/os-public-
本的软件包,请严格遵照版本配套关系使用本文档。 推理部署使用的服务框架是vLLM。vLLM支持v0.5.0版本。 仅支持FP16和BF16数据类型推理。 本案例仅支持在专属资源池上运行。 专属资源池驱动版本要求23.0.6。 适配的CANN版本是cann_8.0.rc3。 支持的模型列表和权重文件
1024。 测试方法:gpu-memory-utilization为0.9下,以4k、8k、16k递增max-model-len,直至达到能执行静态benchmark下的最大max-model-len。 表1 基于vLLM不同模型推理支持最小卡数和最大序列说明 序号 模型名 32GB显存
运行profiling的配置文件。 PROF_xxx开头的文件夹 是 运行profiling的结果文件夹。 run_aggregate.sh 是 运行数据聚合的脚本,可直接本地运行。 run_profiling.log 是 存储运行profiling的日志信息。 父主题: 文生图模型训练推理
28。版本使用的容器引擎为Containerd。 推理部署使用的服务框架是vLLM。vLLM支持v0.6.0版本。 支持FP16和BF16数据类型推理。 Lite k8s Cluster驱动版本推荐为23.0.6。 适配的CANN版本是cann_8.0.rc3。 资源规格要求 本
LP的bert模型,详细代码和指导可参考Bert。 拉取镜像。本测试镜像为bert_pretrain_mindspore:v1,已经把测试数据和代码打进镜像中。 docker pull swr.cn-southwest-2.myhuaweicloud.com/os-public-
使用多少token,必须大于或等于--max-model-len,推荐使用4096或8192。 --dtype:模型推理的数据类型。支持FP16和BF16数据类型推理。float16表示FP16,bfloat16表示BF16。 --tensor-parallel-size:模型并