检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
邀请云租户作为数据提供方,动态构建可信计算空间,实现空间内严格可控的数据使用和监管。 数据融合分析 支持对接多个数据参与方的主流数据存储系统,为数据消费者实现多方数据的SQL Join等融合分析,各方的敏感数据在具有安全支撑的聚合计算节点中实现安全统计。 计算节点 数据参与方使用数
发起联邦预测 企业A单击“发起预测”按钮,选择己方和大数据厂商B的预测数据集,单击确定即可发起预测。 TICS服务会对两方的数据先进行样本对齐,并对双方共有的数据进行联邦预测,预测的结果会保存在企业A(作业发起方)的计算节点上。企业A可以通过obs服务或者登录到计算节点后台获取到对应路径的文件。
Computing Service )打破数据孤岛,在数据隐私保护的前提下,实现行业内部、各行业间的多方数据联合分析和联邦计算。TICS基于安全多方计算MPC、区块链等技术,实现了数据在存储、流通、计算过程中端到端的安全和可审计,推动了跨行业的可信数据融合和协同。 使用TICS的用户角色
空间成员,有权使用空间中的数据,或者将自有数据发布到空间,供其他合作方受限使用。 计算节点 部署在参与方侧,是可信智能计算与合作方侧数据的桥梁,保障数据按照合作方意愿受限使用。 计算节点是管理参与方数据的最小单位。部署计算节点时需要指定空间配置信息。在计算节点中支持配置连接器,注册数据集,任务执行,查看任务执行日志。
企业A在发起实时隐匿查询前需要先执行数据初始化。 待实时预测作业初始化完成后,企业A可以通过页面单击“执行”试用发起查询。 例如查询id为“19581e27de7ced00ff1ce50b2047e7a567c76b1cbaebabe5ef03f7c3017bb5b7”这样的一条数据,查询结果中即会返回企业A所选择的企业B的数据字段。
用多方数据实现的联合建模,曾经被称为联邦机器学习。 联邦预测作业 联邦预测作业在保障用户数据安全的前提下,利用多方数据和模型实现样本联合预测。 可信智能计算节点 数据参与方使用数据源计算节点模块实现自主可控的数据源注册、隐私策略(脱敏、加密)的设定、元数据的发布等,为数据源计算节
String 字段类型 privacy_policy_type String 字段数据隐私处理方式:NONE.不处理,HASH.哈希,MASK.掩码 privacy_policy String 字段数据处理类型:NONE.不处理(默认),ANONYMIZE.脱敏 sql_col_privacy_type
现阶段,企业级的单方风控体系已逐步建立,在机构内数据统一共享的基础上实现了覆盖业务前、中、后各环节的智能风控。然而,单方数据风控面临存在数据不全面、风控不及时的问题。随着隐私计算等技术为数据要素的有效流通提供了必要手段,多方数据联合风控成为新趋势。其中,黑名单共享查询是风控中的
Service)。可信智能计算服务TICS打破数据孤岛,在数据隐私保护的前提下,实现行业内部、各行业间的多方数据联合分析和联邦计算。TICS基于安全多方计算MPC、区块链等技术,实现了数据在存储、流通、计算过程中端到端的安全和可审计,推动了跨行业的可信数据融合和协同。 在调用可信智能计算服务TICS
在创建页面填写如下信息: 作业名称。 作业描述可按需填写。 勾选参与双方的数据集,同时单击右侧已选数据集的对齐列框选择需要求交集的字段信息。 对齐列只能选择非敏感的唯一标识。 选择求交算法。 选择椭圆曲线。 选择大数据量节点。 配置重试参数。开关开启后,执行失败的作业会根据配置定时进行
Computing Service )打破数据孤岛,在数据隐私保护的前提下,实现行业内部、各行业间的多方数据联合分析和联邦计算。TICS基于安全多方计算MPC、区块链等技术,实现了数据在存储、流通、计算过程中端到端的安全和可审计,推动了跨行业的可信数据融合和协同。 使用TICS的用户角色
隐匿查询,也称隐私信息检索,是指查询方隐藏被查询对象关键词或客户id信息,数据服务方提供匹配的查询结果却无法获知具体对应哪个查询对象。数据不出门且能计算,杜绝数据缓存的可能性。 例如查询方希望查询身份证id为“张三”的人信贷公式数据,发起了一个类似于SELECT salary * 16 + age*10
表打开任务详情,可以查看更详细的计算过程信息。 图7 作业计算过程信息详情(截图为多方安全计算作业示例,请以实际作业为准) 父主题: 可信数据交换
场景描述 某企业A在进行新客户营销时的成本过高,想要通过引入外部数据的方式提高营销的效果,降低营销成本。 因此企业A希望与某大数据厂商B展开一项合作,基于双方共有的数据进行联邦建模,使用训练出的联邦模型对新数据进行联邦预测,筛选出高价值的潜在客户,再针对这些客户进行定向营销,达成提高营销效果、降低营销成本的业务诉求。
空间成员完成计算节点部署,配置参数时选择挂载方式和数据目录,参考部署计算节点。 空间成员在计算节点中完成数据发布,参考发布数据。 约束限制 避免作业名重复。 必须选择一个已有的FiBiNet模型才能创建实时预测作业。 实时预测作业必须选择训练FiBiNet模型的参与方计算节点发布的数据集。 创建训练模型时参数必须有"save_format":
背景信息 本案例以“预测乳腺癌是良性/恶性”的场景为例。假设一部分的乳腺癌患者数据存储在xx医院,另一部分数据存储在某个其他机构,不同机构数据所包含的特征相同。 这种情况下,xx医院想申请使用其他机构的乳腺癌患者数据进行乳腺癌预测模型建模会非常困难。因此可以通过华为TICS可信智能计算平
审计日志 审计日志页面是可信智能计算服务提供的一项审计数据流动的功能。通过计算节点侧审计页面信息,用户可以清晰地获知空间中的参与方通过该计算节点运行的任务详情。同时,部署计算节点时若开启BCS功能,审计数据会同步至区块链上。 计算节点侧查看审计日志 用户登录TICS控制台。 进入
方安全计算作业。 多方安全计算作业在TICS中进行解析和任务计划构建,并下发任务给各个数据参与方所在的计算节点。 参与方计算节点从租户侧网络内的数据中获取数据,并使用安全算法进行加密输出。 数据在TICS提供的服务器中进行机密计算。 最终将计算完成的结果加密返回给作业发起方。 空
概述 联邦预测作业在保障用户数据安全、模型资产安全的前提下,利用多方数据和模型实现样本联合预测。 目前TICS支持两种类型的预测方式: 批量预测: 批量预测通过在计算节点后台发起离线预测任务的方式,在任务完成后可以获得指定数据集中所有样本的预测结果。 实时预测: 实时预测通过在计
模型评估 训练时的评估指标是用训练的数据集中随机采样的记录计算的,完成训练后企业A也可以使用其他的数据集对同一个模型进行多次的评估。单击“发起评估”选择训练参与方不同的数据集即可发起模型评估。 至此使用可信联邦学习进行联邦建模的过程已经完成,企业A已经训练出了一个符合自己要求的算