检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
部署专业大模型 创建专业大模型部署任务 查看专业大模型部署任务详情 管理专业大模型部署任务 父主题: 开发盘古专业大模型
盘古大模型服务的配额限制详见表2。 表2 配额限制 资源类型 默认配额限制 是否支持调整 模型实例 ModelArts Studio平台上,单个用户最多可创建和管理2000个模型实例。 是 如果希望申请提升配额,请联系客服。 功能限制 盘古大模型服务的功能限制详见表3。 表3 功能限制 功能类型 使用限制
编排与调用工作流 工作流介绍 编排工作流 调用工作流 管理工作流 父主题: 开发盘古大模型Agent应用
编排与调用应用 应用介绍 编排应用 调用应用 管理应用 父主题: 开发盘古大模型Agent应用
部署科学计算大模型 创建科学计算大模型部署任务 查看科学计算大模型部署任务详情 管理科学计算大模型部署任务 父主题: 开发盘古科学计算大模型
准备工作 申请试用盘古大模型服务 订购盘古大模型服务 配置服务访问授权 创建并管理盘古工作空间
训练NLP大模型 NLP大模型训练流程与选择建议 创建NLP大模型训练任务 查看NLP大模型训练状态与指标 发布训练后的NLP大模型 管理NLP大模型训练任务 NLP大模型训练常见报错与解决方案 父主题: 开发盘古NLP大模型
部署NLP大模型 创建NLP大模型部署任务 查看NLP大模型部署任务详情 管理NLP大模型部署任务 父主题: 开发盘古NLP大模型
训练CV大模型 CV大模型训练流程与选择建议 创建CV大模型训练任务 查看CV大模型训练状态与指标 发布训练后的CV大模型 管理CV大模型训练任务 CV大模型训练常见报错与解决方案 父主题: 开发盘古CV大模型
训练预测大模型 预测大模型训练流程与选择建议 创建预测大模型训练任务 查看预测大模型训练状态与指标 发布训练后的预测大模型 管理预测大模型训练任务 预测大模型训练常见报错与解决方案 父主题: 开发盘古预测大模型
训练科学计算大模型 科学计算大模型训练流程与选择建议 创建科学计算大模型训练任务 查看科学计算大模型训练状态与指标 发布训练后的科学计算大模型 管理科学计算大模型训练任务 科学计算大模型训练常见报错与解决方案 父主题: 开发盘古科学计算大模型
导入数据过程中,为什么无法选中OBS的具体文件进行上传 在数据导入过程中,平台仅支持通过OBS服务导入文件夹类型的数据,而不支持直接导入单个文件。 您需要将文件整理到文件夹中,并选择该文件夹进行上传。 父主题: 大模型使用类问题
数据量和质量均满足要求,为什么盘古大模型微调效果不好 这种情况可能是由于以下原因导致的,建议您排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了欠拟合或过拟合。请检查训练参数中的 “训练轮次”或
行属于自己的大模型应用。通过简单的配置,用户可以轻松创建Agent应用,快速体验智能化应用的便捷性。 平台提供导入知识功能,支持用户存储和管理数据,并与AI应用进行互动。支持多种格式的本地文档(如docx、pptx、pdf等),方便导入至知识,为Agent应用提供个性化数据支持。
段的强调。 问题二:JSON格式错误、JSON内容发散。 解决方案:对于这种情况,可以尝试修改推理参数。例如降低“温度”参数的值,可以起到规范模型输出,使结果不再多样化。 父主题: 从基模型训练出行业大模型
份认证服务”,单击“Token管理 > 获取IAM用户Token(使用密码)”。 如图2,配置请求体参数。 图2 配置请求体参数 其中,domain_id、domain_name、project_id、project_name获取方式如下: 登录管理控制台。 鼠标移动到右上角已登
无监督领域知识数据量无法支持增量预训练,如何进行模型学习 一般来说,建议采用增量预训练的方式让模型学习领域知识,但预训练对数据量的要求较大,如果您的无监督文档量级过小,达不到预训练要求,您可以通过一些手段将其转换为有监督数据,再将转换后的领域知识与目标任务数据混合,使用微调的方式让模型学习。
自定义插件:平台支持开发者创建自定义插件。支持开发者将工具、Function或者API通过配置方式快速创建为一个插件,并供Agent调用。 自定义知识库:平台提供了知识库功能来管理和存储数据,支持为AI应用提供自定义数据,并与之进行互动。多种格式的本地文档(支持docx、pptx、pdf等)都可以导入至知识库。 灵活
大模型开发基本流程介绍 大模型(Large Models)通常指的是具有海量参数和复杂结构的深度学习模型,广泛应用于自然语言处理(NLP)等领域。开发一个大模型的流程可以分为以下几个主要步骤: 数据集准备:大模型的性能往往依赖于大量的训练数据。因此,数据集准备是模型开发的第一步。
范围内进行预测,不仅仅局限于某个地区。它的分辨率相当于赤道附近每个点约25公里x25公里的空间。通过降水模型预测未来的降雨情况,农民和农业管理者可以更有效地规划灌溉时间和频率,也能为可能发生的干旱提供预警,使农业部门能够及时采取措施,如推广节水技术或调整种植计划。 代码助手 在软