检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
准备资源 创建专属资源池 本文档中的模型运行环境是ModelArts Standard。资源规格需要使用专属资源池中的昇腾Snt9B资源,请参考创建资源池购买资源。 推荐使用“西南-贵阳一”Region上的昇腾资源。 专属资源池驱动检查 登录ModelArts控制台,单击“专属资源池
准备镜像 准备大模型推理适用的容器镜像,包括获取镜像地址,了解镜像中包含的各类固件版本,配置Standard物理机环境操作。 镜像版本 本教程中用到基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 配套版本 基础镜像 swr.cn-southwest-2
准备工作 准备资源 准备数据 准备权重 准备代码 准备镜像 准备Notebook(可选) 父主题: 主流开源大模型基于Standard+OBS适配ModelLink PyTorch NPU训练指导(6.3.911)
3.912代码包中AscendCloud-AIGC代码包结构介绍如下,训练脚本以分类的方式集中在scripts文件夹中: AscendCloud-AIGC-6.3.912-xxx ├─aigc_inference ├─aigc_train ├─AscendCloud-Pytorch-Plugin
# 推理工具 代码上传至OBS 将llm_train文件上传至OBS中。 结合准备数据、准备权重、准备代码,将数据集、原始权重、代码文件都上传至OBS后,OBS桶的目录结构如下。 <bucket_name> |──llm_train #
# 推理工具 代码上传至OBS 将llm_train文件上传至OBS中。 结合准备数据、准备权重、准备代码,将数据集、原始权重、代码文件都上传至OBS后,OBS桶的目录结构如下。 <bucket_name> |──llm_train #
ltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json Alpaca: https://github.com/tatsu-lab/stanford_alpaca/blob/main/alpaca_data.json
准备工作 准备资源 准备数据 准备权重 准备代码 准备镜像 父主题: Qwen-VL模型基于Standard+OBS适配PyTorch NPU训练指导(6.3.912)
instantiating the model with *from_pretrained* you can also easily set the TorchScript flag model = BertModel.from_pretrained("bert-base-uncased", torchscript=True)
准备工作 准备资源 准备数据 准备权重 准备代码 准备镜像 准备Notebook(可选) 父主题: 主流开源大模型基于Standard+OBS适配PyTorch NPU训练指导(6.3.907)
出现“save error”错误,可以运行代码,但是无法保存 如果当前Notebook还可以运行代码,但是无法保存,保存时会提示“save error”错误。 大多数原因是华为云WAF安全拦截导致的。当前页面,即用户的输入或者代码运行的输出有一些字符被华为云拦截,认为有安全风险。
ModelArts训练作业无法解析参数,日志报错 问题现象 ModelArts训练作业无法解析参数,遇到如下报错,导致无法正常运行: error: unrecognized arguments: --data_url=xxx://xxx/xxx error: unrecognized
训练过程中无法找到so文件 问题现象 ModelArts训练作业运行时,日志中遇到如下报错,导致训练失败: libcudart.so.9.0 cannot open shared object file no such file or directory 原因分析 编译生成s
创建模型成功后,部署服务报错,如何排查代码问题 问题现象 创建模型成功后,部署服务失败,如何定位是模型代码编写有问题。 原因分析 用户自定义镜像或者通过基础镜像导入的模型时,用户自己编写了很多自定义的业务逻辑,这些逻辑有问题将会导致服务部署或者预测失败,需要能够排查出哪里有问题。
如何减小本地或ECS构建镜像的目的镜像的大小? 减小目的镜像大小的最直接的办法就是选择尽可能小且符合自己诉求的镜像,比如您需要制作一个PyTorch2.1+Cuda12.2的镜像,官方如果没有提供对应的PyTorch或者Cuda版本的镜像,优选一个没有PyTorch环境或没有安装
conv2d/weights. 通过以下方式控制需要训练的参数列表。其中,“trainable_include_patterns”为需要训练的参数列表,“trainable_exclude_patterns”为不需要训练的参数列表。 --trainable_exclude_patterns: Variables
构建镜像失败,因为触发了限流。请稍后重试。 Failed to build the image due to the threshold has been reached. Please try again later. 触发了限流,请稍后重试。 异常 发送构建镜像请求失败。 Failed to send
制作自定义镜像用于推理 模型的自定义镜像制作流程 在Notebook中通过镜像保存功能制作自定义镜像用于推理 在Notebook中通过Dockerfile从0制作自定义镜像用于推理 在ECS中通过Dockerfile从0制作自定义镜像用于推理 父主题: 制作自定义镜像用于ModelArts
查看训练作业事件 训练作业的(从用户可看见训练作业开始)整个生命周期中,每一个关键事件点在系统后台均有记录,用户可随时在对应训练作业的详情页面进行查看。 方便用户更清楚的了解训练作业运行过程,遇到任务异常时,更加准确的排查定位问题。当前支持的作业事件如下所示: 训练作业创建成功 训练作业创建失败报错:
准备镜像 构建容器镜像并调试 镜像构建及调试与单机单卡相同。 具体操作,请参考线下容器镜像构建及调试。 上传镜像 请参考单机单卡训练的上传镜像章节操作。 父主题: 单机多卡