检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
如何在Notebook中安装外部库? ModelArts Notebook中已安装Jupyter、Python程序包等多种环境,包括TensorFlow、MindSpore、PyTorch、Spark等。您也可以使用pip install在Notobook或Terminal中安装外部库。
准备预测分析数据 使用ModelArts自动学习构建预测分析模型时,您需要将数据上传至对象存储服务(OBS)中。OBS桶需要与ModelArts在同一区域,例如OBS桶区域为“北京四”时,必须保证ModelArts管理控制台区域也在“北京四”区域,否则会导致无法获取到相关数据。 数据集要求
"1606233612612" : 0, "1606320012681" : 0 }, "failed" : { }, "failed_system" : { } } } 状态码 状态码 描述 200 OK 401 Unauthorized 403
支持部署为在线服务、批量服务或边缘服务。 在自动学习页面中,仅支持部署为在线服务,如需部署为批量服务或边缘服务,可在“模型部署”页面部署。 支持发布至市场 将产生的模型发布至AI Gallery,共享给其他用户。 支持创建新版本 创建新版本,仅支持从ModelArts训练作业、OBS、模型模板、或自定义
数据准备与处理 数据准备使用流程 创建ModelArts数据集 导入数据到ModelArts数据集 处理ModelArts数据集中的数据 标注ModelArts数据集中的数据 发布ModelArts数据集中的数据版本 分析ModelArts数据集中的数据特征 导出ModelArts数据集中的数据
在ModelArts的Notebook中如何使用pandas库处理OBS桶中的数据? 参考下载OBS文件到Notebook中的指导,将OBS中的数据下载至Notebook本地处理。 参考pandas用户指南处理pandas数据。 父主题: Standard Notebook
处理ModelArts数据集中的数据 数据处理场景介绍 创建ModelArts数据校验任务 创建ModelArts数据清洗任务 创建ModelArts数据选择任务 创建ModelArts数据增强任务 管理和查看数据处理任务 父主题: 数据准备与处理
史。 导出ModelArts数据集中的数据到OBS 导出ModelArts数据集中的数据为新数据集 导出ModelArts数据集中的数据到AI Gallery 父主题: 数据准备与处理
Cluster使用流程 ModelArts Lite Cluster面向k8s资源型用户,提供托管式k8s集群,并预装主流AI开发插件以及自研的加速插件,以云原生方式直接向用户提供AI Native的资源、任务等能力,用户可以直接操作资源池中的节点和k8s集群。本文旨在帮助您了解Lite Cl
标注ModelArts数据集中的数据 数据标注场景介绍 通过人工标注方式标注数据 通过智能标注方式标注数据 通过团队标注方式标注数据 管理标注作业 父主题: 数据准备与处理
导出ModelArts数据集中的数据到AI Gallery 针对数据集中的数据,用户可以选中部分数据或者通过条件筛选出需要的数据,导出到AI Gallery。用户可以通过任务历史查看数据导出的历史记录。发布到AI Gallery中的数据集,可以设置是否公开,将数据集公开给其他人使用。
导入数据到ModelArts数据集 数据导入方式介绍 从OBS导入数据到ModelArts数据集 从DWS导入数据到ModelArts数据集 从DLI导入数据到ModelArts数据集 从MRS导入数据到ModelArts数据集 从本地上传数据到ModelArts数据集 父主题:
Lite Server使用流程 ModelArts Lite Server提供多样化的xPU裸金属服务器,赋予用户以root账号自主安装和部署AI框架、应用程序等第三方软件的能力,为用户打造专属的云上物理服务器环境。用户只需轻松选择服务器的规格、镜像、网络配置及密钥等基本信息,即可迅
Integer 数据类型。可选值如下: 0:OBS桶(默认值) 1:GaussDB(DWS)服务 2:DLI服务 3:RDS服务 4:MRS服务 5:AI Gallery 6:推理服务 schema_maps 否 Array of SchemaMap objects 表格数据对应的schema映射信息。
使用PyCharm上传数据至Notebook 不大于500MB数据量,直接复制至本地IDE中即可。 大于500MB数据量,请先上传到OBS中,再从OBS下载到云上Notebook。 图1 数据通过OBS中转上传到Notebook 上传数据至OBS,具体操作请参见上传文件至OBS桶。
发布ModelArts数据集中的数据版本 ModelArts在数据准备过程中,针对同一数据源的数据,对不同时间处理或标注后的数据,按照版本进行区分方便后续模型构建和开发时选择对应的数据集版本进行使用。 关于数据集版本 针对刚创建的数据集(未发布前),无数据集版本信息,必须执行发布操作后,才能应用于模型开发或训练。
查看数据特征分析结果。 “版本选择”:在右侧下拉框中选择进行对比的版本。也可以只选择一个版本。 “类型”:选择需要分析的类型。支持“all”、“train”、“eval”和“inference”。 “数据特征指标”:在右侧下拉框中勾选需要展示的指标。详细指标说明请参见支持分析指标及其说明。
PretrainedConfig.from_pretrained(dir)来将配置设置到self.config中 PretrainedModel.from_pretrained(dir) # 将模型实例序列化到 dir/pytorch_model.bin 中 PretrainedModel
是否检测数据集中正在运行(包括初始化)的任务。可选值如下: true:检测数据集中正在运行(包括初始化)的任务 false:不检测数据集中正在运行的任务(默认值) contain_versions 否 Boolean 数据集是否包含版本。 dataset_type 否 Integer 数据集类型。可选值如下: 0:图像分类
13b中创建文件夹training_data。 利用OBS Browser+工具将步骤1下载的数据集上传至步骤2创建的文件夹目录下。得到OBS下数据集结构: obs://<bucket_name>/training_data |── train-00000-of-0