检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
OLAP数据库二次开发和管理能力的高级工程师华为认证培训华为云数据仓库高级工程师培训培养具有分布式数据库集群开发和运维能力的高级工程师,以及对数据库领域相关人员进行技能提升。课程内容:深入讲解GaussDB DWS数据仓库架构、数据库设计与管理、数据迁移、数据库的运维与调优,数据库的安全管理和高可
OLAP数据库二次开发和管理能力的高级工程师华为认证培训华为云数据仓库高级工程师培训培养具有分布式数据库集群开发和运维能力的高级工程师,以及对数据库领域相关人员进行技能提升。课程内容:深入讲解GaussDB DWS数据仓库架构、数据库设计与管理、数据迁移、数据库的运维与调优,数据库的安全管理和高可
于云厂商提供的基础设施的能力。方案4,则依靠云厂商的数仓云能力。这也对云厂商产品的选择,提出了更高的要求。下文将就此展开说明。二、云端数据仓库2.1 云方案优势基于上面的说明,采用数据仓库的云服务,具有较多优势,包括:更好的性价比(无论是前期购买、还是后期运营)更快的交付速度(最
Support)。 数据仓库的特点: 数据仓库是面向主题的;操作型数据库的数据组织面向事务处理任务,而数据仓库中的数据是按照一定的主题域进行组织。主题是指用户使用数据仓库进行决策时所关心的重点方面,一个主题通常与多个操作型信息系统相关。 数据仓库是集成的,数据仓库的数据有来自于分散的操作型
什么是数据仓库服务 数据仓库服务GaussDB(DWS) 是一种基于华为云基础架构和平台的在线数据处理数据库,提供即开即用、可扩展且完全托管的分析型数据库服务。GaussDB(DWS)是基于华为融合数据仓库GaussDB产品的云原生服务 ,兼容标准ANSI SQL 99和SQL
对象注册功能通过路由及创建对象的DDL语句,实现对象动态注册;通过命令行指令实现对象注册;适当增加对象索引、约束索引的注册信息,用于扩展细粒度对象锁能力,提高数据仓库ETL SQL并发能力;*数据仓库环境下,只需要考虑到表级双活的能力,不建议实施字段级、记录级双活;vi
文章目录 数据仓库 什么是数据仓库? 数据库与数据仓库的区别? 事实表和维度表 数据仓库的数据模型: 为什么数据仓库要分层? 数据仓库模式:Kimball (金箔)和 Inmon(恩门)
进行重分布。存算分离表在重分布时,表只支持读,元数据的重分布时间一般比较短,但是,如果表上创建了索引,索引会影响重分布的性能,重分布完成时间与索引的数据量成正比关系,在此期间,表只支持读。 存算一体(单机部署)不支持分布式模式,因此不支持扩缩容、逻辑集群、资源管理等操作。 存算一
一级指标:数据中台直接产出,核心指标(提供给公司高层看的)、原子指标以及跨部门的派生指标。二级指标:基于中台提供的原子指标,业务部门创建的派生指标。 三、命名规范 - 表命名 3.1 常规表 常规表是我们需要固化的表,是正式使用的表,是目前一段时间内需要去维护去完善的表。 规范:分层前缀[dwd|
创建数据仓库GaussDB(DWS) 参见“创建集群”章节创建GaussDB(DWS)数据仓库。创建成功后,记录集群的内网IP。 为确保ECS与GaussDB(DWS)网络互通,GaussDB(DWS)数据仓库需要与ECS在同一个区域,同一个虚拟私有云和子网下。 表1 DWS规格
数据仓库规格 GaussDB(DWS)的规格按照产品类型分为存算一体和存算分离。其中存算一体还包含单机版模式。各产品类型的不同差异,详情请参见数据仓库类型。 低配置集群,如内存16G、vCPU4核及以下的规格,建议不要用于生产环境,可能会导致资源过载风险。 存算一体规格 存算一体
数据仓库是商业智能(业务智能、BI)的基础。概念看起来简单,把数据存在静态的仓库里头以便多个维度分析,但实现和应用较复杂困难。几个值得注意的要点:1)数据仓库跟业务执行系统的管理要点完全不同。按事实和维度存储,减少执行流程和执行角色的干扰2)数据仓库要基于精准的业务需要来建立,系
为了达到上述的要求,建立起一个高效率、高数据质量、良好的可扩展性,再加上为了提高建仓的速度,根据在实际生产环境中的经验的总结,于是数据仓库需要分层。 数据仓库分层的原因 1、用空间换时间,通过数据预处理提高效率,通过大量的预处理可以提升应用系统的用户体验(效率),但是数据仓库会存在大量冗余的数据
在介绍Lambda和Kappa架构之前,我们先回顾一下数据仓库的发展历程: 传送门-数据仓库发展历程 写在前面 咳,随着数据量的暴增和数据实时性要求越来越高,以及大数据技术的发展驱动企业不断升级迭代,数据仓库架构方面也在不断演进,分别经历了以下过程:早期经典数仓架构 >
了华为云混合负载数据仓库DWS。DWS采用“一库两用”的设计理念,一套数据仓库集群既可以支持超高并发、低时延的业务交易请求,同时可支撑复杂的海量数据分析和BI应用,减少开发和运维成本。相比于原系统,BI系统时效性大大提高,且数据分析性能提升3倍。做到数据实时一致的同时,DWS也确
Processing),支持复杂的分析操作,侧重决策支持,并且提供直观易懂的查询结果。 数据仓库汇总有可能有很多维度数据的统计分析结果,取百家之长(各个数据源的数据),成就自己的一方天地(规划各种业务域的模型,指标)。 举个栗子~ 车联网早期是肯定没有数据仓库的,刚开始启动阶段就是
从数据源的采集到多层清洗加工的过程中,数据仓库的数据逻辑分层一般分为4层。 分层的核心思想就是解耦。 ODS Operation Data Store 原始数据层,也有叫贴源层,该层对采集的原始数据进行原样存储。 DWD Data Warehouse Detail 明细数据层,对ODS进行清洗,解决数据质量问题。
关于数据环境: 数据仓库开发最好是以反复的方式进行。首先建立数据仓库的一部分,然后再建立另一部分。即出现所谓的CLDS的数据驱动的开发生命周期,区别于传统的需求驱动开发生命周期(SDLC)。 粒度的选择: 一般采用双重粒度或建立活样本数据库。 数据仓库中分区是在应用层而非系统层进行;
为了达到上述的要求,建立起一个高效率、高数据质量、良好的可扩展性,再加上为了提高建仓的速度,根据在实际生产环境中的经验的总结,于是数据仓库需要分层。 数据仓库分层的原因 1、用空间换时间,通过数据预处理提高效率,通过大量的预处理可以提升应用系统的用户体验(效率),但是数据仓库会存在大量冗余的数据
临时转储数据仓库
云容器引擎-成长地图 | 华为云 数据仓库服务 GaussDB(DWS) 数据仓库服务(Data Warehouse Service,简称DWS)是完全托管的企业级云上数据仓库服务,具备免运维、在线扩展、高效的多源数据加载能力,兼容PostgreSQL生态。助力企业经济高效地对海量数据进行在线分析,实现数据快速变现。