检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
从DLI导入数据到ModelArts数据集 表格数据集支持从DLI导入数据。 从DLI导入数据,用户需要选择DLI队列、数据库和表名称。所选择的表的schema(列名和类型)需与数据集一致,支持自动获取所选择表的schema。DLI的详细功能说明,请参考DLI用户指南。 图1 DLI
从MRS导入数据到ModelArts数据集 ModelArts支持从MRS服务中导入存储在HDFS上的csv格式的数据,首先需要选择已有的MRS集群,并从HDFS文件列表选择文件名称或所在目录,导入文件的列数需与数据集schema一致。MRS的详细功能说明,请参考MRS用户指南。
导出ModelArts数据集中的数据到OBS 针对数据集中的数据,用户可以选中部分数据或者通过条件筛选出需要的数据,当需要将数据集中的数据存储至OBS用于后续导出使用时,可通过此种方式导出成新的数据集。用户可以通过任务历史查看数据导出的历史记录。 目前只有“图像分类”、“物体检测”
在JupyterLab使用Git克隆代码仓 在JupyterLab中使用Git插件可以克隆GitHub开源代码仓库,快速查看及编辑内容,并提交修改后的内容。 前提条件 Notebook处于运行中状态。 打开JupyterLab的git插件 在Notebook列表中,选择一个实例,单击右侧的打开进入
查询训练作业参数详情 功能介绍 查看指定的训练作业参数详情。 URI GET /v1/{project_id}/training-job-configs/{config_name} 参数说明如表1所示。 表1 路径参数 参数 是否必选 参数类型 说明 project_id 是 String
更新数据集 更新数据集的名称和描述信息。 dataset.update_dataset(dataset_name=None, description=None) 示例代码 更新数据集名称 from modelarts.session import Session from modelarts.dataset
创建数据集 功能介绍 创建数据集。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v2/{project_id}/datasets 表1 路径参数 参数
从OBS导入数据到数据集场景介绍 导入方式 OBS导入数据方式分为“OBS目录”和“Manifest文件”两种。 OBS目录:指需要导入的数据集已提前存储至OBS目录中。此时需选择用户具备权限的OBS路径,且OBS路径内的目录结构需满足规范,详细规范请参见从OBS目录导入数据规范说明
安装Gallery CLI配置工具 场景描述 Gallery CLI配置工具支持将AI Gallery仓库的资产下载到云服务端,便于在云服务本地进行训练、部署推理。 Gallery CLI配置工具支持将单个超过5GB的文件从本地上传至AI Gallery仓库中。 约束限制 Gallery
Standard数据管理 添加图片时,图片大小有限制吗? 数据集图片无法显示,如何解决? 如何将多个物体检测的数据集合并成一个数据集? 导入数据集失败 表格类型的数据集如何标注 本地标注的数据,导入ModelArts需要做什么? 为什么通过Manifest文件导入失败? 标注结果存储在哪里
更新数据集 功能介绍 修改数据集的基本信息,如数据集名称、描述、当前版本或标签等信息。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI PUT /v2/{project_id
数据准备使用流程 ModelArts是面向AI开发者的一站式开发平台,能够支撑开发者从数据到模型的全流程开发过程,包含数据处理、算法开发、模型训练、模型部署等操作。并且提供AI Gallery功能,能够在市场内与其他开发者分享数据、算法、模型等。为了能帮用户快速准备大量高质量的数据
创建数据集 创建数据集,支持从OBS中导入数据。 create_dataset(session, dataset_name=None, data_type=None, data_sources=None, work_path=None, dataset_type=None, **kwargs
Profiling数据采集 在train.py的main()函数Step迭代处添加配置,添加位置如下图所示: 此处需要注意的是prof.step()需要加到dataloder迭代循环的内部以保证采集单个Step迭代的Profiling数据。 更多信息,请参见Ascend PyTorch
数据准备与处理 数据准备使用流程 创建ModelArts数据集 导入数据到ModelArts数据集 处理ModelArts数据集中的数据 标注ModelArts数据集中的数据 发布ModelArts数据集中的数据版本 分析ModelArts数据集中的数据特征 导出ModelArts
准备预测分析数据 使用ModelArts自动学习构建预测分析模型时,您需要将数据上传至对象存储服务(OBS)中。OBS桶需要与ModelArts在同一区域,例如OBS桶区域为“北京四”时,必须保证ModelArts管理控制台区域也在“北京四”区域,否则会导致无法获取到相关数据。 数据集要求
从本地上传数据到ModelArts数据集 前提条件 已存在创建完成的数据集。 创建一个空的OBS桶,OBS桶与ModelArts在同一区域,并确保用户具有OBS桶的操作权限。 本地上传 文件型和表格型数据均支持从本地上传。从本地上传的数据存储在OBS目录中,请先提前创建OBS桶。
导出ModelArts数据集中的数据到AI Gallery 针对数据集中的数据,用户可以选中部分数据或者通过条件筛选出需要的数据,导出到AI Gallery。用户可以通过任务历史查看数据导出的历史记录。发布到AI Gallery中的数据集,可以设置是否公开,将数据集公开给其他人使用
创建数据集版本 为数据集创建新的版本。 dataset.create_version(name=None, version_format=None, label_task_type=None, label_task_id=None, **kwargs) 示例代码 示例一:为数据集创建新的版本
数据管理计费项 计费说明 在ModelArts数据管理模块,提供的数据集、数据标注、数据处理功能都不收费。具体如下: 数据集:在ModelArts数据管理中创建数据集时,不收费。 数据标注:在ModelArts数据管理中进行手动标注和智能标注时,不收费。 数据处理:在ModelArts