检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
训练脚本说明 训练启动脚本说明和参数配置 训练的数据集预处理说明 训练中的权重转换说明 训练tokenizer文件说明 父主题: 主流开源大模型基于Lite Cluster适配PyTorch NPU训练指导(6.3.909)
训练脚本说明 训练启动脚本说明和参数配置 训练的数据集预处理说明 训练中的权重转换说明 训练tokenizer文件说明 父主题: 主流开源大模型基于DevServer适配PyTorch NPU训练指导(6.3.906)
使用ModelArts时提示“权限不足”,如何解决? 当您使用ModelArts时如果提示权限不足,请您按照如下指导对相关服务和用户进行授权,并对用户权限进行检查操作。 以下案例以缺失OBS权限不足为例,介绍如何进行授权操作。 由于ModelArts的使用权限依赖OBS服务的授权,
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Lite Cluster上的训练方案。训练框架使用的是ModelLink。 本方案目前仅适用于企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Lite Server上的预训练和全量微调方案。训练框架使用的是ModelLink。 本方案目前仅适用于部分企业客户,完成本方案的部署
使用ModelArts时提示“权限不足”,如何解决? 当您使用ModelArts时如果提示权限不足,请您按照如下指导对相关服务和用户进行授权,并对用户权限进行检查操作。 本案例中以OBS权限不足为例,介绍如何为用户授予OBS服务权限。其它权限不足的场景也可以参考本案例操作,只是授权范围不同
性能调优 算子优化 为了更好地发挥昇腾设备的性能,将ChatGLM-6B原模型中的部分算子替换成了NPU亲和的算子,修改的是modeling_chatglm.py文件,下图通过对比列举了对应的修改方式,图示中左边为原始方式,右边为修改后的方式。 使用torch.bmm替换torch.baddbmm
训练脚本说明参考 训练启动脚本说明和参数配置 训练的数据集预处理说明 训练中的权重转换说明 训练tokenizer文件说明 父主题: 主流开源大模型基于DevServer适配ModelLink PyTorch NPU训练指导(6.3.908)
Paraformer基于DevServer适配PyTorch NPU推理指导(6.3.911) 方案概览 本方案介绍了在ModelArts Lite DevServer上使用昇腾计算资源Ascend Snt9B开展Paraformer的推理过程。 约束限制 本方案目前仅适用于企业客户
应用示例 创建图像分类数据集并进行标注任务 创建并完成图像分类的智能标注任务 开发环境的应用示例 以PyTorch框架创建训练作业(新版训练) 创建和修改工作空间 管理ModelArts服务的委托授权
创建Standard专属资源池 本章节主要介绍创建Standard专属资源池的详细操作。 前提条件 已经创建虚拟私有云。 已经创建子网。 步骤一:创建网络 ModelArts网络是承载ModelArts资源池节点的网络连接,基于华为云的VPC进行封装,对用户仅提供网络名称以及CIDR
ModelArts入门实践 本章节列举了一些常用的实践案例,方便您快速了解并使用ModelArts完成AI开发。 表1 常用最佳实践 分类 实践案例 描述 适用人群 ModelArts Standard模型训练 基于ModelArts Standard上运行GPU训练任务 本案例介绍了如何使用
ModelArts-成长地图 | 华为云 ModelArts ModelArts是面向开发者的一站式AI开发平台,为机器学习与深度学习提供海量数据预处理及半自动化标注、大规模分布式Training、自动化模型生成,及端-边-云模型按需部署能力,帮助用户快速创建和部署模型,管理全周期
训练脚本说明参考 训练启动脚本说明和参数配置 训练的数据集预处理说明 训练中的权重转换说明 训练tokenizer文件说明 离线训练安装包准备说明 父主题: 主流开源大模型基于DevServer适配ModelLink PyTorch NPU训练指导(6.3.910)
训练脚本说明参考 训练启动脚本说明和参数配置 训练的数据集预处理说明 训练中的权重转换说明 训练tokenizer文件说明 离线训练安装包准备说明 父主题: 主流开源大模型基于DevServer适配ModelLink PyTorch NPU训练指导(6.3.911)
AI Gallery(新版) AI Gallery使用流程 发布和管理AI Gallery模型 发布和管理AI Gallery数据集 发布和管理AI Gallery项目 发布和管理AI Gallery镜像 发布和管理AI Gallery中的AI应用 使用AI Gallery微调大师训练模型
准备代码 本教程中用到的训练、推理代码如下表所示,请提前准备好。 获取模型软件包和权重文件 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表1所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud
准备代码 本教程中用到的训练、推理代码如下表所示,请提前准备好。 获取模型软件包和权重文件 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表1所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud
准备代码 本教程中用到的训练、推理代码如下表所示,请提前准备好。 获取模型软件包和权重文件 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表1所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud
准备代码 本教程中用到的训练、推理代码如下表所示,请提前准备好。 获取模型软件包和权重文件 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表1所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud