检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
可信数据交换 概述 创建申请 确认申请 创建合约 签署合约 查看履约记录 查看作业计算过程和作业报告
数据集发布 前提条件 完成数据准备工作。 操作步骤 进入TICS服务控制台。 在计算节点管理中,找到购买的计算节点,通过登录地址,进入计算节点控制台。 图1 前往计算节点 登录计算节点后,在下图所述位置新建连接器。 图2 新建连接器 输入正确的连接信息,建立数据源和计算节点之间的安全连接
创建数据集 通过数据集,用户可获取到名下详细的资源列表。同时,对于有敏感信息的数据集,还可以单独设置隐私策略,并在发布到空间侧后对其他参与方生效,限制敏感信息的使用,保障数据安全。 创建结构化数据集 创建数据集前需存在已创建好的连接器,参考创建连接器。 用户登录TICS控制台。 进入
发布数据集 企业B分别自己的csv数据文件上传到自己的计算节点上,通过“数据管理”模块创建各自的数据集,并单击“发布”。 企业B的数据集如下: 创建数据集后单击“发布”按钮即可将数据的元数据信息发布到tics空间侧,供其他合作方参考。 父主题: 外部数据共享
数据集统计 功能介绍 用户可以使用该接口进行空间数据集统计。 调用方法 请参见如何调用API。 URI GET /v1/{project_id}/leagues/{league_id}/datasets-statistics 表1 路径参数 参数 是否必选 参数类型 描述 league_id
数据集管理 查询空间已注册数据集列表 父主题: 空间API
发布数据集 企业A和大数据厂商B分别将自己的csv数据文件上传到自己的计算节点上,通过“数据管理”模块创建各自的数据集。 企业A的数据集如下: 大数据厂商B的数据集如下: 创建数据集后单击“发布”按钮即可将数据的元数据信息发布到tics空间侧,供其他合作方参考。 父主题: 使用TICS
发布数据集 企业A和大数据厂商B分别将自己的csv数据文件上传到自己的计算节点上,通过“数据管理”模块创建各自的数据集。 企业A的数据集如下: 大数据厂商B的数据集如下: 创建数据集后单击“发布”按钮即可将数据的元数据信息发布到tics空间侧,供其他合作方参考。 父主题: 使用TICS
发布数据集 企业A将自己的需要预测的csv数据文件上传到自己的计算节点上,通过“数据管理”模块创建用于预测的数据集。 企业A预测数据集如下: 大数据厂商B仍使用训练时的提供的全量数据作为预测数据集,没有发布新的数据集。 父主题: 使用TICS联邦预测进行新数据离线预测
发布数据集 企业A和企业B分别将自己的csv数据文件上传到自己的计算节点上,通过“数据管理”模块创建各自的数据集,并单击“发布”。 以企业A为例,数据集信息如下: 隐私求交场景需要将求交的字段设置为“非敏感”的唯一标识。 父主题: 隐私求交黑名单共享场景
申请使用数据 数据需求方公司B在自己的计算节点页面上可以查看数据目录,找到数据拥有方公司A创建并发布的数据。 图1 创建数据申请 对数据集单击“申请使用”,在弹窗中填写需要使用的字段和访问需求,保存后可以提交审批,由公司A审核。 访问需求包括: 访问截止时间:设置访问的时间限制,超过访问时间后
创建数据预处理作业 数据预处理是训练机器学习模型的一个重要前置步骤,其主要是通过转换函数将特征数据转换成更加适合算法模型的特征数据过程。TICS特征预处理功能能够实现对数据的探索、分析、规整以及转换,以达到数据在训练模型中可使用、可实用,在TICS平台内完成数据处理到建模的闭环。
阶段一:数据发布 前提条件 完成数据准备工作。 操作步骤 进入TICS服务控制台。 在计算节点管理中,找到购买的计算节点,通过登录地址,进入计算节点控制台。 图1 前往计算节点 登录计算节点后,在下图所述位置新建连接器。 图2 新建连接器 输入正确的连接信息,建立数据源和计算节点之间的安全连接
数据集注册管理 数据集列表展示 创建或更新数据集 批量删除数据集 发布数据集到空间 获取数据详情 父主题: 计算节点API
开发数据预处理作业 数据预处理通常被用于评估/训练作业场景。本文以使用训练数据训练预处理作业,然后再将预处理方法应用于评估/预测数据为例进行说明。 训练数据预处理作业 评估/预测数据预处理 前提条件 已提前准备好训练数据,和评估/预测数据。 数据预处理作业选择的结构化数据集(包括CSV
模型训练 企业A在完成特征选择后,可以单击右下角的“启动训练”按钮,配置训练的超参数并开始训练。 等待训练完成后就可以看到训练出的模型指标。 模型训练完成后如果指标不理想可以重复调整7、8两步的所选特征和超参数,直至训练出满意的模型。 父主题: 使用TICS可信联邦学习进行联邦建模
模型评估 训练时的评估指标是用训练的数据集中随机采样的记录计算的,完成训练后企业A也可以使用其他的数据集对同一个模型进行多次的评估。单击“发起评估”选择训练参与方不同的数据集即可发起模型评估。 至此使用可信联邦学习进行联邦建模的过程已经完成,企业A已经训练出了一个符合自己要求的算法模型
批量删除数据集 功能介绍 本接口用于批量删除数据集。 调用方法 请参见如何调用API。 URI POST /v1/agents/datasets/batch-delete 请求参数 表1 请求Body参数 参数 是否必选 参数类型 描述 [数组元素] 是 Array of strings
步骤6:空间成员发布数据 发布数据 空间成员登录TICS控制台。进入TICS控制台后,单击页面左侧“计算节点管理”,进入“计算节点管理”页面。 在“计算节点管理”页,查找需要发布数据的计算节点名称,单击“计算节点名称”进入计算节点详情页。 图1 选择计算节点 在“计算节点详情”页,
可信数据交换场景 场景描述 创建数据 申请使用数据 审批数据申请 创建合约 父主题: 使用场景