检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
训练时设置的参数,具体参数查看表1。 loss收敛情况:日志里存在lm loss参数 ,lm loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定平缓。也可以使用可视化工具TrainingLogParser查看loss收敛情况,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。
准备环境 资源规格要求 本文档中的模型运行环境是ModelArts Lite的Lite k8s Cluster。推荐使用“西南-贵阳一”Region上的资源和Ascend Snt9B。 硬盘空间:至少200GB。 Ascend资源规格: Ascend: 1*ascend-snt9b表示Ascend单卡。
若查看启动作业日志信息,可通过以下命令打印正在启动的日志信息。其中${pod_name}为pod信息中的NAME,例如vcjob-main-0。 kubectl logs -f ${pod_name} 训练过程中,训练日志会在最后的Rank节点打印。 图1 打印训练日志 训练完成后
若查看启动作业日志信息,可通过以下命令打印正在启动的日志信息。其中${pod_name}为pod信息中的NAME,例如vcjob-main-0。 kubectl logs -f ${pod_name} 训练过程中,训练日志会在最后的Rank节点打印。 图1 打印训练日志 训练完成后
若查看启动作业日志信息,可通过以下命令打印正在启动的日志信息。其中${pod_name}为pod信息中的NAME,例如vcjob-main-0。 kubectl logs -f ${pod_name} 训练过程中,训练日志会在最后的Rank节点打印。 图1 打印训练日志 训练完成后
Finetune训练 本章节介绍SDXL&SD 1.5模型的Finetune训练过程。Finetune是指在已经训练好的模型基础上,使用新的数据集进行微调(fine-tuning)以优化模型性能。 启动SD1.5 Finetune训练服务 使用ma-user用户执行如下命令运行训练脚本。
若查看启动作业日志信息,可通过以下命令打印正在启动的日志信息。其中${pod_name}为pod信息中的NAME,例如vcjob-main-0。 kubectl logs -f ${pod_name} 训练过程中,训练日志会在最后的Rank节点打印。 图1 打印训练日志 训练完成后
训练过程中,训练日志会在第一个的Rank节点打印。 图1 打印训练日志 训练完成后,如果需要单独获取训练日志文件,日志存放在第一个的Rank节点中;日志存放路径为:对应表1表格中output_dir参数值路径下的trainer_log.jsonl文件 查看性能 训练性能主要通过训练日志中的2个指标查看,吞吐量和loss收敛情况。
部署到端、边、云的各种设备上和各种场景上,并且还为个人开发者、企业和设备生产厂商提供了一整套安全可靠的一站式部署方式。 图1 部署模型的流程 在线推理服务,可以实现高并发,低延时,弹性伸缩,并且支持多模型灰度发布、A/B测试。 支持各种部署场景,既能部署为云端的在线推理服务和批量推理任务,也能部署到端,边等各种设备。
训练过程中,训练日志会在第一个的Rank节点打印。 图1 打印训练日志 训练完成后,如果需要单独获取训练日志文件,日志存放在第一个的Rank节点中;日志存放路径为:对应表1表格中output_dir参数值路径下的trainer_log.jsonl文件 查看性能 训练性能主要通过训练日志中的2个指标查看,吞吐量和loss收敛情况。
训练过程中,训练日志会在第一个的Rank节点打印。 图1 打印训练日志 训练完成后,如果需要单独获取训练日志文件,日志存放在第一个的Rank节点中;日志存放路径为:对应表1表格中output_dir参数值路径下的trainer_log.jsonl文件。 查看性能 训练性能主要通过训练日志中的2个指标查看,吞吐量和loss收敛情况。
训练过程中,训练日志会在第一个的Rank节点打印。 图1 打印训练日志 训练完成后,如果需要单独获取训练日志文件,日志存放在第一个的Rank节点中;日志存放路径为:对应修改重要参数表格中output_dir参数值路径下的trainer_log.jsonl文件 查看性能 训练性能主要通过训练日志中的2个指标查看,吞吐量和loss收敛情况。
门。 CTS支持追踪的ModelArts管理事件和数据事件列表,请参见支持云审计的关键操作、开发环境支持审计的关键操作列表、训练作业支持审计的关键操作列表、模型管理支持审计的关键操作列表、服务管理支持审计的关键操作列表。 图1 云审计服务 数据管理支持审计的关键操作列表 表1 数据管理支持审计的关键操作列表
腾设备上运行(单机单卡、单机多卡),并获得更好的推理性能收益。 ModelArts针对上述使用场景,在给出系统化推理业务昇腾迁移方案的基础上,提供了即开即用的云上集成开发环境,包含迁移所需要的算力资源和工具链,以及具体的Notebook代码运行示例和最佳实践,并对于实际的操作原理
fana查看AOM保存的所有ModelArts Standard的所有指标。具体参见使用Grafana查看AOM中的监控指标。 通过Grafana插件查看AOM中的监控指标的操作流程如下: 安装配置Grafana 安装配置Grafana有在Windows上安装配置Grafana、
ices_out_cuda_frame failed with error code 0” 训练作业失败,返回错误码139 训练作业失败,如何使用开发环境调试训练代码? 日志提示“ '(slice(0, 13184, None), slice(None, None, None))'
PP:流水线并行将模型的不同层放置到不同的计算设备,降低单个计算设备的显存消耗,从而实现超大规模模型训练。流水线并行也叫层间并行,层输入输出的依赖性使得设备需要等待前一步的输出,通过batch进一步切分成微batch, 网络层在多个设备上的特殊安排和巧妙的前向后向计算调度,可以最
Torch自动迁移。 在PyTorch模型迁移后进行训练的过程中,CPU只负责算子的下发,而NPU负责算子的执行,算子下发和执行异步发生,性能瓶颈在此过程中体现。在PyTorch的动态图机制下,算子被CPU逐个下发到NPU上执行。一方面,理想情况下CPU侧算子下发会明显比NPU侧
Cluster”页面。 您可以通过单击“购买AI专属集群”右侧的“操作记录”,查看当前处于失败状态的资源池信息。 图1 创建失败资源池信息 鼠标悬停在“状态”列的上,即可看到该操作失败的具体原因。 失败的记录默认按照操作的申请时间排序,最多显示500条并保留3天。 父主题: 资源池
需修改finetune_onevision_ascend.sh中的数据集和模型路径为步骤七和步骤八的下载完成后的路径 路径修改说明: 执行训练脚本前,需修改pretrain_clip_ascend.sh中的数据集和模型路径为步骤七和步骤八的下载完成后的路径,如图1所示; 执行训练脚本前,修改fin