检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
境、数据管理、在线服务等功能将不能正常使用。该API支持管理员给IAM子用户设置委托,支持设置当前用户的访问密钥。调用该API需要在IAM系统里配置Security Administrator权限。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API E
创建工作空间 功能介绍 创建工作空间("default"为系统预留的默认工作空间名称,不能使用)。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v1/
文提供端到端案例指导,帮助您快速了解如何在ModelArts上选择合适的训练方案并进行模型训练。 针对不同的数据量和算法情况,推荐以下训练方案: 单机单卡:小数据量(1G训练数据)、低算力场景(1卡Vnt1),存储方案使用“OBS的并行文件系统(存放数据和代码)”。 单机多卡:中
连接远端开发环境时,一直处于"Setting up SSH Host xxx: Copying VS Code Server to host with scp"超过10分钟以上,如何解决? 问题现象 原因分析 通过查看日志发现本地vscode-scp-done.flag显示成功上传,但远端未接收到。 解决方法 关闭VS
ModelArts中的作业为什么一直处于等待中? ModelArts控制台为什么能看到创建失败被删除的专属资源池? ModelArts训练专属资源池如何与SFS弹性文件系统配置对等链接?
问题现象 通过API接口选择自定义镜像导入创建模型,配置了运行时依赖,没有正常安装pip依赖包。 原因分析 自定义镜像导入不支持配置运行时依赖,系统不会自动安装所需要的pip依赖包。 处理方法 重新构建镜像。 在构建镜像的dockerfile文件中安装pip依赖包,例如安装Flask依赖包。
A系列裸金属服务器使用CUDA cudaGetDeviceCount()提示CUDA initializat失败 问题现象 在A系列GPU裸金属服务器上,系统环境是ubuntu20.04+nvidia515+cuda11.7,使用Pytorch2.0时出现如下错误: CUDA initialization:
2/use/downloads.html 需要下载的安装包与操作系统有关,请根据需要选择合适的安装包。 如果操作系统为Linux aarch64,请下载mindspore-lite-2.2.10-linux-aarch64.tar.gz。 如果操作系统为Linux x86_64,请下载mindspore-lite-2
UDP端口配置情况 影响NPU卡通信性能 Snt9B Snt9C 系统内核自动升级预警 KernelUpgradeWarning 重要 系统内核自动升级预警,旧版本:%s,新版本:%s 系统内核升级可能导致配套AI软件异常,请检查系统更新日志,避免机器重启 可能导致配套AI配套软件不可用 Snt3P
on device”。 原因分析 ModelArts部署使用的是容器化部署,容器运行时有空间大小限制,当用户的模型文件或者其他自定义文件,系统文件超过Docker size大小时,会提示镜像内空间不足。 处理方法 公共资源池容器Docker size的大小最大支持50G,专属资源池Docker
print('JOB_ID: ', os.environ['JOB_ID']) print('RANK_TABLE_FILE: ', os.environ['RANK_TABLE_FILE']) print('RANK_SIZE: ', os.environ['RANK_SIZE'])
permission.)。 图2 复制模型文件失败 原因分析 由于ModelArts的使用权限依赖OBS服务的授权,需要为用户授予OBS的系统权限。子用户的IAM权限是由其主用户设置的,如果主用户没有赋予OBS的putObjectAcl权限即会导致创建模型构建失败。 处理方法 了
Turbo”,在“文件系统”中选择SFS Turbo实例名称,并指定“存储位置”和“云上挂载路径”。系统会在训练作业启动前,自动将存储位置中的文件目录挂载到训练容器中指定路径。 图2 设置训练“SFS Turbo” 当前训练作业支持挂载多个弹性文件服务SFS Turbo,文件系统支持重复挂载
sub_img_list = os.listdir(os.path.join(data_path, item)) img_name_list += [ os.path.join(data_path, item
创建算法”的“代码目录”下放置相应的文件或安装包。 安装python依赖包请参考模型中引用依赖包时,如何创建训练作业? 安装C++的依赖库请参考如何安装C++的依赖库? 在预训练模型中加载参数请参考如何在训练中加载部分训练好的参数? 解析输入路径参数、输出路径参数 运行在ModelArts
在Notebook实例中运行训练代码,如果数据量太大或者训练层数太多,亦或者其他原因,导致出现“内存不够”问题,最终导致该容器实例崩溃。 出现此问题后,系统将自动重启Notebook,来修复实例崩溃的问题。此时只是解决了崩溃问题,如果重新运行训练代码仍将失败。 如果您需要解决“内存不够”的问题
在线服务发起预测请求: 方式一:使用图形界面的软件进行预测(以Postman为例)。Windows系统建议使用Postman。 方式二:使用curl命令发送预测请求。Linux系统建议使用curl命令。 方式三:使用Python语言发送预测请求。 方式四:使用Java语言发送预测请求。
开启训练故障自动重启功能 创建训练作业时,可开启自动重启功能。当环境问题导致训练作业异常时,系统将自动修复异常或隔离节点,并重启训练作业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图1 开启故障重启 断点续训练是通过checkpoint机制实现。c
机器或资源池无法连通网络,并无法git clone下载代码、安装python依赖包的情况下,用户则需要找到已联网的机器(本章节以Linux系统机器为例)提前下载资源,以实现离线安装。用户可遵循以下步骤操作。 步骤一:资源下载 Python依赖包下载:进入 scripts/install
容的情况,例如transformers包,导致import的时候出现了错误。 用户代码问题,出现了内存越界、非法访问内存空间的情况。 未知系统问题导致,建议先尝试重建作业,重建后仍然失败,建议提工单定位。 处理方法 如果存在之前能跑通,什么都没修改,过了一阵跑不通的情况,先去排查