检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
发布数据集 企业B分别自己的csv数据文件上传到自己的计算节点上,通过“数据管理”模块创建各自的数据集,并单击“发布”。 企业B的数据集如下: 创建数据集后单击“发布”按钮即可将数据的元数据信息发布到tics空间侧,供其他合作方参考。 父主题: 外部数据共享
管理实例 实例管理是可信智能计算服务提供的一项查看计算节点作业实例的功能。通过实例管理,用户可以查看到该计算节点所有作业的执行实例,并查看作业的状态、计算过程、执行结果。 用户登录TICS控制台。 进入TICS控制台后,单击页面左侧“计算节点管理”,进入计算节点管理页面。 在“计
发布数据集 企业A和企业B分别将自己的csv数据文件上传到自己的计算节点上,通过“数据管理”模块创建各自的数据集,并单击“发布”。 以企业A为例,数据集信息如下: 隐私求交场景需要将求交的字段设置为“非敏感”的唯一标识。 父主题: 隐私求交黑名单共享场景
至此,企业A完成了整个TICS联邦建模的流程,并将模型应用到了营销业务当中。这个预测作业可以作为后续持续预测的依据,企业A可以定期地使用模型预测自己的新业务数据。同时企业A也可以根据新积累的数据训练出新的模型,进一步优化模型预测的精确率,再创建新的联邦预测作业,产出更精准的预测结果供业务使用。 父主题:
模型训练 企业A在完成特征选择后,可以单击右下角的“启动训练”按钮,配置训练的超参数并开始训练。 等待训练完成后就可以看到训练出的模型指标。 模型训练完成后如果指标不理想可以重复调整7、8两步的所选特征和超参数,直至训练出满意的模型。 父主题: 使用TICS可信联邦学习进行联邦建模
场景描述 某企业A在进行新客户营销时的成本过高,想要通过引入外部数据的方式提高营销的效果,降低营销成本。 因此企业A希望与某大数据厂商B展开一项合作,基于双方共有的数据进行联邦建模,使用训练出的联邦模型对新数据进行联邦预测,筛选出高价值的潜在客户,再针对这些客户进行定向营销,达成提高营销效果、降低营销成本的业务诉求。
场景描述 某企业A在进行新客户营销时的成本过高,想要通过引入外部数据的方式提高营销的效果,降低营销成本。 因此企业A希望与某大数据厂商B展开一项合作,基于双方共有的数据进行联邦建模,使用训练出的联邦模型对新数据进行联邦预测,筛选出高价值的潜在客户,再针对这些客户进行定向营销,达成提高营销效果、降低营销成本的业务诉求。
支持在分布式的、信任边界缺失的多个参与方之间建立互信空间; 实现跨组织、跨行业的多方数据融合分析和多方联合学习建模。 灵活多态 支持对接主流数据源(如MRS、 DLI、 RDS、 Oracle等)的联合数据分析; 支持对接多种深度学习框架(TICS,TensorFlow)的联邦计算;
创建联邦预测作业 企业A单击“联邦预测 > 批量预测 > 创建”按钮,进入联邦预测作业的创建页面。企业A需要通过“算法类型”、“训练作业”等筛选条件可以找到用于预测的模型,点选使用的模型后单击“确定”按钮即完成联邦预测作业的创建。 父主题: 使用TICS联邦预测进行新数据离线预测
根据企业用户的职能,设置不同的访问权限,以达到用户之间的权限隔离。 将TICS资源委托给更专业、高效的其他华为账号或者云服务,这些账号或者云服务可以根据权限进行代运维。 如果华为账号已经能满足您的要求,不需要创建独立的IAM用户,您可以跳过本章节,不影响您使用TICS服务的其它功能。
样本对齐 单击右下角的下一步进入“样本对齐”页面,这一步是为了进行样本的碰撞,过滤出共有的数据交集,作为后续步骤的输入。企业A需要选择双方的样本对齐字段,并单击“对齐”按钮执行样本对齐。执行完成后会在下方展示对齐后的数据量及对齐结果路径。 父主题: 使用TICS可信联邦学习进行联邦建模
用区域和可用区来描述数据中心的位置,您可以在特定的区域、可用区创建资源。 区域(Region)指物理的数据中心。每个区域完全独立,这样可以实现较大程度的容错能力和稳定性。资源创建成功后不能更换区域。 可用区(AZ,Availability Zone)是同一区域内,电力和网络互相隔离的物理区域,一
从上面两张表可以看出: (1)训练轮数对于联邦学习模型的性能影响不大,这主要是由于乳腺癌数据集的分类相对简单,且数据集经过了扩充导致的; (2)增大每个参与方本地模型训练的迭代次数,可以显著提升最终联邦学习模型的性能。 参与方数据量不同时,独立训练对比横向联邦训练的准确率 本节实验不再将训练集均匀划
管理任务 任务管理是可信智能计算服务提供的一项查看计算节点参与任务的功能。通过任务管理,用户可以查看到曾在该计算节点上执行过的所有作业,并查看自己这个计算节点在作业中的位置以及数据流向。 通过任务管理,用户可以查看自己的计算节点在空间中的作业参与度,并通过“计算过程”来确认数据是否合理、安全地被使用。
准备数据 企业A和大数据厂商B需要按照训练模型使用的特征,提供用于预测的数据集,要求预测的数据集特征必须包含训练时使用的特征。 表1 企业A的数据 字段名称 字段类型 描述 id string hash过后的手机号字符串 col0-col4 float 企业A数据特征 industry_predict
一VPC。填写的用户名,需具有Hive的读写权限。“集群名称”为用户所需要使用的MRS Hive数据源所在的MRS集群。“用户名”为MRS集群中拥有Hive权限的集群用户。 注意事项 IEF上部署的计算节点不支持创建MRS Hive、ModelArts和DWS类型的连接器。 MRS
供数方接受用数方的数据使用需求,审视是否符合用数方需求或与前期的约定一致,若不符合,可拒绝申请;若符合,则确认申请,接下来便拟定合约,发送给用数方签署。 前提条件 存在已创建的申请。 约束限制 仅供数方操作,即该数据集的提供方去确认申请。 用数方提交申请后未撤回的申请,一旦供数方确认申请,申请内容无法修改。
什么是项目? 什么是项目? 云的每个区域默认对应一个项目,这个项目由系统预置,用来隔离物理区域间的资源(计算资源、存储资源和网络资源),以区域默认单位为项目进行授权,IAM用户可以访问您账号中该区域的所有资源。 如果您希望进行更加精细的权限控制,可以在区域默认的项目中创建子项目,并在子
保证目录下至少包含一个csv文件,且所有csv文件的特征数保持一致。此外,选择数据集的原始文件,需要指定csv文件的“分隔符”、“是否包含表头”。“是否包含表头”是指文件的第一行是否是每一个字段的名称。 数据结构:配置每个字段的类别标签,包括以下几种: “字段类型”:支持BOOL
联邦预测作业在保障用户数据安全、模型资产安全的前提下,利用多方数据和模型实现样本联合预测。 目前TICS支持两种类型的预测方式: 批量预测: 批量预测通过在计算节点后台发起离线预测任务的方式,在任务完成后可以获得指定数据集中所有样本的预测结果。 实时预测: 实时预测通过在计算节点部署在线预测服务的方式,允许用户