检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在华为公有云平台,申请的资源一般要求连通网络。因此用户在准备环境时可以运行 scripts/install.sh 直接下载安装资源,或通过 Dockerfile 下载安装资源并构建一个新的镜像。 若用户的机器或资源池无法连通网络,并无法git clone下载代码、安装python依赖包的情况下,
opencompass也支持通过本地权重来进行ppl精度测试。本质上使用transformers进行推理,因为没有框架的优化,执行时间最长。另一方面,由于是使用transformers推理,结果也是最稳定的。对单卡运行的模型比较友好,算力利用率比较高。对多卡运行的推理,缺少负载均衡,利用率低。
等AI数字资产的共享,为高校科研机构、AI应用开发商、解决方案集成商、企业级/个人开发者等群体,提供安全、开放的共享及交易环节,加速AI资产的开发与落地,保障AI开发生态链上各参与方高效地实现各自的商业价值。 使用流程 本节主要介绍在AI Gallery中管理资产的整体流程。 在AI
如果是在公共资源池部署服务,可等待其他用户释放资源后,再进行服务部署。 如果是在专属资源池部署服务,在满足模型需求的前提下,尝试选用更小的容器规格或自定义规格,进行服务部署; 如果当前资源池的资源确实不够,也可以考虑将资源池扩容后再进行服务部署。公共资源池扩容,请联系系统管理员。专属资源池扩容,可参考扩缩容资源池。
rts边缘资源池的服务不支持停止。 删除服务 如果服务不再使用,您可以删除服务释放资源。 登录ModelArts管理控制台,在左侧菜单栏中选择“模型部署>在线服务”,进入在线服务管理页面。 单击在线服务列表“操作”列的“更多>删除”删除服务。 勾选在线服务列表中的服务,然后单击列表左上角“删除”按钮,批量删除服务。
Gallery仓库依次下载除某种格式之外的其他格式的文件到服务器的缓存目录下。 gallery-cli download {repo_id} --exclude "*.json" 如下所示,表示下载除“.json”格式之外的其他格式的文件到服务器的缓存目录“/test”下,当回显“100%”时表示下载完成。
opencompass也支持通过本地权重来进行ppl精度测试。本质上使用transformers进行推理,因为没有框架的优化,执行时间最长。另一方面,由于是使用transformers推理,结果也是最稳定的。对单卡运行的模型比较友好,算力利用率比较高。对多卡运行的推理,缺少负载均衡,利用率低。
opencompass也支持通过本地权重来进行ppl精度测试。本质上使用transformers进行推理,因为没有框架的优化,执行时间最长。另一方面,由于是使用transformers推理,结果也是最稳定的。对单卡运行的模型比较友好,算力利用率比较高。对多卡运行的推理,缺少负载均衡,利用率低。
选择“我的服务”页签。 选择待删除的服务,单击操作列的“更多 > 删除”,在弹窗中输入“DELETE”,单击“确定”,删除服务。 单实例QPS的推荐值说明 单实例流量限制QPS和请求的输入输出有关,表2中的QPS推荐值是在多轮对话、摘要生产和信息检索场景下预估出的数据,仅供参
在训练作业详情页面,单击“资源占用情况”页签查看计算节点的资源使用情况,最多可显示最近三天的数据。在“资源占用情况”窗口打开时,会定期向后台获取最新的资源使用率数据并刷新。 操作一:如果训练作业使用多个计算节点,可以通过实例名称的下拉框切换节点。 操作二:单击图例“cpuUsage”、“gpuMemU
opencompass也支持通过本地权重来进行ppl精度测试。本质上使用transformers进行推理,因为没有框架的优化,执行时间最长。另一方面,由于是使用transformers推理,结果也是最稳定的。对单卡运行的模型比较友好,算力利用率比较高。对多卡运行的推理,缺少负载均衡,利用率低。
PPO强化学习目前仅限制支持于llama3系列 2、PPO训练暂不支持 ZeRO-3存在通信问题,如llama3-70B使用ZeRO-3暂不支持 训练策略类型 全参full,配置如下: finetuning_type: full lora,如dpo仅支持此策略;配置如下: finetuning_type:
Arts边缘资源池的服务不支持停止。 删除服务 如果服务不再使用,您可以删除服务释放资源。 登录ModelArts管理控制台,在左侧菜单栏中选择“模型部署>批量服务”,进入批量服务管理页面。 单击批量服务列表“操作”列的“删除”,删除服务。 勾选批量服务列表中的服务,然后单击列表左上角“删除”按钮,批量删除服务。
],列表中元素model_instance对象即为本章节描述的模型管理,可调用模型接口。 支持按照检索参数查询模型列表,返回满足检索条件的模型list,检索参数如表1所示。 在查询列表时,返回list的同时,会打印模型列表的详细信息,如表2和表3所示。 当前支持最大获取150个模型对象。 表1 查询检索参数说明
本小节介绍Notebook开发环境、训练任务实例的目录挂载情况(以下挂载点在保存镜像的时候不会保存)。详情如下: Notebook 表1 Notebook挂载点介绍 挂载点 是否只读 备注 /home/ma-user/work/ 否 客户数据的持久化目录。 /data 否 客户PFS的挂载目录。 /cache
Standard推理部署 如何将Keras的.h5格式的模型导入到ModelArts中? ModelArts导入模型时,如何编写模型配置文件中的安装包依赖参数? 在ModelArts中使用自定义镜像创建在线服务,如何修改端口? ModelArts平台是否支持多模型导入? 在ModelArts中导入模型对于镜像大小有什么限制?
anifest文件的规范。 数据标注状态选择“已标注”,您需要保证目录或manifest文件满足相应的格式规范,否则可能存在导入失败的情况。 导入已标注的文件,导入完成后,请检查您导入的数据是否为已标注状态。 表格数据集从OBS导入操作 ModelArts支持从OBS导入表格数据,即csv文件。
下配置,设置该程序可见的GPU: os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2,3,4,5,6,7' 其中,0为服务器的GPU编号,可以为0,1,2,3等,表明对程序可见的GPU编号。如果未进行添加配置则该编号对应的GPU不可用。 父主题:
、PPO强化学习目前仅限制支持于llama3系列 2、PPO训练暂不支持ZeRO-3存在通信问题,如llama3-70B使用ZeRO-3暂不支持 训练策略类型 全参full,配置如下: finetuning_type: full lora,如dpo仅支持此策略;配置如下: finetuning_type:
'c:\python39\Scripts\ephemeral-port-reserve.exe.deleteme ”。 原因分析 用户使用权限问题导致。 处理方法 用户电脑切换到管理员角色,键盘快捷键(Windows+R模式)并输入cmd,进入黑色窗口,执行如下命令: python -m pip install --upgrade