检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Tokens的部分舍去。 专业大模型按需推理计费仅支持OP账号使用,推理服务按实际调用的Tokens数量计费,不足1K Tokens则小数点保留至后四位计算。 计费模式 盘古大模型的计费模式见表1。 表1 计费模式表 计费项 计费模式 付费方式 计费周期 模型订阅服务 包周期计费 预付费
欠拟合:当微调数据量很小时,模型无法有效地调整模型的参数,同时也很容易受到数据噪声的干扰,从而影响模型的鲁棒性。当目标任务的难度较大时,该问题将愈加显著。 当然,如果您的可用数据很少,也可以采取一些方法来扩充您的数据,从而满足微调要求,比如: 数据增强:在传统机器学习中,可以通过简单的重复上采
获取购买权限后,根据需要选择计费模式,基模型需选择“N2 - 基础模型功能 & 应用增强功能”。用户可根据需求自行选择功能模型,输入资源名称,类型选择“边缘部署”,输入需要订购的推理算力,单击“确认订单”。 订购完成后,进入“平台管理 > 资产管理 > 模型推理资产”,可查看订购的边缘部署资产。
排顺序 在提示词中内容的顺序也很重要,基于盘古大模型调优经验,将关键信息放在结尾处,模型输出效果更好。不同任务的关键信息不同,若需要模型生成的内容更具创意性,关键信息需要为内容描述;需要模型严格遵循指令进行回复的,关键信息为指令及说明。 父主题: 常用方法论
先制定一个能够明确表达主题的提示词(若模型训练时包含相似任务,可参考模型训练使用的提示词),再由简至繁,逐步增加细节和说明。打好基础是后续提示词优化的前提,基础提示词生成效果差,优化只会事倍功半。 例如,文学创作类可以使用“请创作一个关于{故事主题}的故事”,邮件写作类可以使用“
搭结构 提示词的结构需要尽可能直观,不要将指令、上下文、说明等内容放在一行输入,适当的换行将提示词的内容结构拆分体现出来。一个结构清晰的提示词输入,能够让模型更好地理解您的意图。 另外,上下文可以用'''xxx'''三引号区隔开,以防止指令冲突。在如下的闭卷问答任务中,文本中部分
补预设 当任务存在多个情境时,编写提示词时需要考虑全面,需要做好各种情境的预设,告知模型对应策略,可以有效防止模型误回答以及编造输出。 父主题: 常用方法论
如何评估微调后的模型是否正常 评估模型效果的方法有很多,通常可以从以下几个方面来评估模型训练效果: Loss曲线:通过Loss曲线的变化趋势来评估训练效果,确认训练过程是否出现了过拟合或欠拟合等异常情况。 模型评估:使用平台的“模型评估”功能,“模型评估”将对您之前上传的测试集进行评
常用方法论 打基础 补说明 搭结构 排顺序 补预设 父主题: 提示词写作实践
意输出格式中的key不要有语义重复,并且需要与前文要求中的key名字保持一致,否则模型会不理解是同一个key。 恰当的表述 可以尝试从英语的逻辑去设计提示词。 最好是主谓宾结构完整的句子,少用缩写和特殊句式。 应使用常见的词汇和语言表达方式,避免使用生僻单词和复杂的句式,防止机器理解偏差。
基于NLP-N2-基模型训练的单场景模型,可支持选择一个场景进行推理,如:搜索RAG方案等,具有32K上下文能力。 NLP大模型训练过程中,一般使用token来描述模型可以处理的文本长度。token(令牌)是指模型处理和生成文本的基本单位。token可以是词或者字符的片段。模型的输入和输出的文本都会
Token在计算机系统中代表令牌(临时)的意思,拥有Token就代表拥有某种权限。Token认证就是在调用API的时候将Token加到请求消息头,从而通过身份认证,获得操作API的权限。 Token的有效期为24小时,需要使用一个Token鉴权时,可以先缓存起来,避免频繁调用。 如果您的华为云账号已升级
少于xx个字的文本。”,将回答设置为符合要求的段落。 续写:根据段落的首句、首段续写成完整的段落。 若您的无监督文档没有任何结构化信息,可以将有监督的问题设置为“以下是一篇文章的第一个句子:xxx/第一段落:xxx。请根据以上的句子/段落,续写为一段不少于xx个字的文本。”,再将回答设置为符合要求的段落。
为什么微调后的模型,只能回答在训练样本中学过的问题 当您将微调的模型部署以后,输入一个已经出现在训练样本中的问题,模型生成的结果很好,一旦输入了一个从未出现过的数据(目标任务相同),回答却完全错误。这种情况可能是由于以下几个原因导致的,建议您依次排查: 训练参数设置:您可以通过绘
模型支持的区域 区域是一个地理区域的概念。我国地域面积广大,由于带宽的原因,无法仅依靠一个数据中心为全国客户提供服务。因此,根据地理区域的不同将全国划分成不同的支持区域。 盘古大模型当前仅支持西南-贵阳一区域。 图1 盘古大模型服务区域 父主题: 模型能力与规格
模型支持的操作 在选择和使用盘古大模型时,了解不同模型所支持的操作行为至关重要。不同模型在预训练、微调、模型评估、模型压缩和在线推理等方面的支持程度各不相同,开发者应根据自身需求选择合适的模型。以下是各个模型支持的具体操作: 表1 模型支持的操作 模型 预训练 微调 模型评估 模型压缩
与其他云服务的关系 与对象存储服务的关系 盘古大模型使用对象存储服务(Object Storage Service,简称OBS)存储数据和模型,实现安全、高可靠和低成本的存储需求。 与ModelArts服务的关系 盘古大模型使用ModelArts服务进行算法训练部署,帮助用户快速创建和部署模型。
模型的基础信息 盘古大模型平台为用户提供了多种规格的模型,涵盖从基模型到功能模型的多种选择,以满足不同场景和需求。不同模型在处理上下文token长度和功能上有所差异,以下是当前支持的模型清单,您可以根据实际需求选择最合适的模型进行开发和应用。 表1 NLP大模型清单 模型类别 模型
Loss)是一种衡量模型预测结果和真实结果差距的指标,通常情况下越小越好。 一般来说,一个正常的Loss曲线是单调递减的,即随着训练的进行,Loss值不断减小,直到收敛到一个较小的值。以下给出了几种正常的Loss曲线形式: 图2 正常的Loss曲线:平滑下降 图3 正常的Loss曲线:阶梯下降 如果
tem,让模型按预设的人设风格回答问题。例如,以下示例要求模型以幼儿园老师的风格回答问题。 { "messages": [ { "role": "system", "content": "请用幼儿园老师的口吻回答问题,注