已找到以下 10000 条记录
  • 浅谈深度学习

    理,多媒体学习,语音,推荐个性化技术,以及其他相关领域都取得了很多成果。深度学习使机器模仿视听思考等人类的活动,解决了很多复杂的模式识别难题,使得人工智能相关技术取得了很大进步。深度学习定义深度学习定义:一般是指通过训练多层网络结构对未知数据进行分类或回归深度学习分类:有监督

    作者: QGS
    39
    2
  • Standard自动学习 - AI开发平台ModelArts

    提供“自动学习白盒化”能力,开放模型参数、自动生成模型,实现模板化开发,提高开发效率 采用自动深度学习技术,通过迁移学习(只通过少量数据生成高质量的模型),多维度下的模型架构自动设计(神经网络搜索自适应模型调优),更快、更准的训练参数自动调优自动训练 采用自动机器学习技术,基于

  • 认识深度学习

    什么是深度学习 要理解什么是深度学习,人们首先需要理解它是更广泛的人工智能领域的一部分。简而言之,人工智能涉及教计算机思考人类的思维方式,其中包括各种不同的应用,例如计算机视觉、自然语言处理机器学习。 机器学习是人工智能的一个子集,它使计算机在没有明确编程的情况下能够更好地完成

    作者: 建赟
    1845
    2
  • 深度学习之超参数验证集

             大多数机器学习算法都有设置超参数,可以用来控制算法行为。超参数的值不是通过学习算法本身学习出来的(尽管我们可以设计一个嵌套的学习过程,一个学习算法为另一个学习算法学出最优超参数)。有一个超参数:多项式的次数,作为容量超参数。控制权重衰减程度的 是另一个超参数。 

    作者: 小强鼓掌
    935
    4
  • 适合新手的深度学习综述(4)--深度学习方法

    简要介绍了无监督学习深度架构,并详细解释了深度自编码器。4.3 深度强化学习强化学习使用奖惩系统预测学习模型的下一步。这主要用于游戏机器人,解决平常的决策问题。Schmidthuber(2014) 描述了强化学习 (RL) 中深度学习的进展,以及深度前馈神经网络 (FNN) 循环神经网络

    作者: @Wu
    177
    1
  • 什么是深度学习

    深度学习是支撑人工智能发展的核心技术,云服务则是深度学习的主要业务模式之一。OMAI深度学习平台(以下简称OMAI平台)即是在上述前提下诞生的平台软件。OMAI深度学习平台是具备深度学习算法开发、模型训练、推理服务等能力的一站式平台软件。OMAI平台以支持高性能计算技术大规模分

    作者: OMAI
    6642
    0
  • 深度学习之构建机器学习算法

    | x)该优化仍然有闭解。       如果我们将该模型变成非线性的,那么大多数损失函数不再有优化闭解。这就要求我们选择一个迭代数值优化过程,如梯度下降等。组合模型,损失函数优化算法来构建学习算法的配方同时适用于监督学习无监督学习。线性回归实例说明了如何适用于监督学习的。无监督学习时,我们需要定义一个只包含

    作者: 小强鼓掌
    830
    3
  • 深度学习之构建机器学习算法

    求我们选择一个迭代数值优化过程,如梯度下降等。组合模型,损失函数优化算法来构建学习算法的配方同时适用于监督学习无监督学习。线性回归实例说明了如何适用于监督学习的。无监督学习时,我们需要定义一个只包含 X 的数据集,一个合适的无监督损失函数一个模型。例如,通过指定如下损失函数

    作者: 小强鼓掌
    525
    1
  • 机器学习服务是什么?

    简单介绍一下机器学习服务是什么

  • 配置虚拟网络拓扑 - 华为乾坤

    配置虚拟网络拓扑 操作步骤 单击“拓扑”页签。 在“VN”中选择已经建立的VN名称。 在“预定义拓扑”页签下,配置拓扑信息,如图1所示。 Hub1站点优先级为“1”,Hub2站点优先级为“2”。 图1 配置Overlay拓扑 配置完成后,单击“确定”。 父主题: 创建Overlay网络

  • 配置虚拟网络拓扑 - 华为乾坤

    配置虚拟网络拓扑 操作步骤 单击“拓扑”页签。 在“VN”中选择已经建立的VN名称。 在“预定义拓扑”页签下,配置拓扑信息,如图1所示。 Hub1站点优先级为“1”,Hub2站点优先级为“2”。 图1 配置Overlay拓扑 配置完成后,单击“确定”。 父主题: 创建Overlay网络

  • 矩阵向量相乘“深度学习”笔记

    矩阵向量相乘矩阵乘法是矩阵运算中最重要的操作之一。两个矩阵AB的矩阵相乘是第三个矩阵C。为了使乘法可被定义,矩阵A的列数必须矩阵B的行数相等。如果矩阵A的形状是m x n,矩阵B的形状是n x p,那么矩阵C的形状是m x p。我们可以通过将两个或多个矩阵并列放置以书写矩阵乘法,列如

    作者: QGS
    731
    2
  • 【mindSpore】【深度学习】求指路站内的深度学习教程

    老师给了我们个任务,用mindSpore完成一个深度学习,求大佬指路,站内有什么方便的教程。要求不能是花卉识别、手写体数字识别、猫狗识别,因为这些按教程已经做过了(然而我还是不会mindSpore)。尽量简单,我们只要是个深度学习就能完成任务。

    作者: abcd咸鱼
    1443
    1
  • 分享深度学习笔记组件学习

    组件学习组件学习不仅使用一个模型的知识,还使用多个模型的知识。人们相信,通过独特的信息组合或输入(包括静态动态),深度学习可以比单一模式更深入地理解表现。迁移学习是组件学习的一个非常明显的例子。基于这一思想,对类似问题预先训练的模型权重可用于对特定问题进行微调。为了区分不同类

    作者: 初学者7000
    628
    1
  • 深度学习发展的学习范式——成分学习

    成分学习    成分学习不仅使用一个模型的知识,而且使用多个模型的知识。人们相信,通过独特的信息组合或投入(包括静态动态的),深度学习可以比单一的模型在理解性能上不断深入。    迁移学习是一个非常明显的成分学习的例子, 基于这样的一个想法, 在相似问题上预训练的模型权重可以

    作者: 初学者7000
    716
    5
  • 深度学习之上溢下溢

    在数字计算机上实现连续数学的根本困难是,我们需要通过有限数量的位模式来表示无限多的实数。这意味着我们在计算机中表示实数时,几乎总会引入一些近似误差。在许多情况下,这仅仅是舍入误差。如果在理论上可行的算法没有被设计为最小化舍入误差的累积,可能就会在实践中失效,因此舍入误差会导致一些问题。一种特别的毁灭性舍入误差是下溢

    作者: 小强鼓掌
    1053
    4
  • 深度学习之悬崖梯度爆炸

    多层神经网络通常存在像悬崖一样的斜率较大区域,如图8.3所示。这是由于几个较大的权重相乘导致的。遇到斜率极大的悬崖结构时,梯度更新会很大程度地改变参数值,通常会完全跳过这类悬崖结构。不管我们是从上还是从下接近悬崖,情况都很糟糕,但幸运的是我们可以用使用介绍的启发式梯度截断(gradient

    作者: 小强鼓掌
    446
    2
  • 自建系统内嵌APM拓扑页面 - 应用性能管理 APM

    步骤6-7实现拓扑页面的内嵌。 创建账号DomainA下的IAM用户userB,并授予Security AdministratorAgent Operator权限(全局服务-全局项目)。 DomainAuserB为示例名称,请以实际为准。 将userB的用户名密码配置到企业

  • 深度学习导论

    2012年开始,深度学习在企业界的应用开始加速发展。许多大型科技公司开始将深度学习应用于语音识别、图像分类、自然语言处理等领域,并取得了突破性的进展。这些成功的应用案例进一步推动了深度学习在企业界的发展,越来越多的企业开始投入资源进行深度学习的研究应用。深度学习的用途非常广泛,如下图4

    作者: 林欣
    42
    1
  • 深度学习释义

    深度学习是机器学习的一种,而机器学习是实现人工智能的必经路径。深度学习的概念源于人工神经网络的研究,含多个隐藏层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。研究深度学习的动机在于建立模拟人脑进行分析学

    作者: 某地瓜
    1961
    1