检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
表8 SWRImage 属性 描述 是否必填 数据类型 swr_path 容器镜像的SWR路径 是 str 示例: example = SWRImage(swr_path = "**") # 容器镜像地址,用于模型注册节点的输入 表9 GalleryModel 属性 描述 是否必填
在ModelArts镜像管理注册镜像报错ModelArts.6787怎么处理? 用户如何设置默认的kernel?
命令说明 表1 ma-cli支持的命令 命令 命令详情 configure ma-cli鉴权命令,支持用户名密码、AK/SK image ModelArts镜像构建、镜像注册、查询已注册镜像信息等 obs-copy 本地和OBS文件/文件夹间的相互复制 ma-job ModelArts
<bucket_name> |──llm_train # 解压代码包后自动生成的代码目录,无需用户创建 |── AscendSpeed # 代码目录 |──ascendcloud_patch
您可以单击智能生成功能自动获取正则表达式。 设置自动化搜索参数 从已设置的“超参”中选择可用于搜索优化的超参。优化的超参仅支持float类型,选中自动化搜索参数后,需设置取值范围。
<bucket_name> |──llm_train # 解压代码包后自动生成的代码目录,无需用户创建 |── AscendSpeed # 代码目录 |──ascendcloud_patch
VLLM调度层适配ATB、pybind 支持LLAMA7B/13B/65B 支持单机多卡推理 ATB模式支持w8a16量化,推理性能提升 配套CANN8.0.RC1镜像 无 算子,包名:AscendCloud-OPP Scatter、Gather算子性能提升,满足MoE场景 昇腾随机数生成算子与
这通常在数据集发生变化,或者需要重新生成缓存时使用 preprocessing_num_workers 16 用于指定预处理数据的工作线程数。随着线程数的增加,预处理的速度也会提高,但也会增加内存的使用。
模型注册参数配置 model_name:填写模型名称,工作流多次运行使用同一个模型名称会自动新增版本。此参数填写后,模型注册和服务部署会同步使用该参数名称。 工作流运行完成后用户可以在ModelArts控制台的“模型管理”模块查看已经部署完成的推理服务。
policies: - event: PodEvicted action: RestartJob plugins: configmap1980: - --rank-table-version=v2 # 保持不动,生成
单机执行命令为:sh scripts/llama2/0_pl_sft_13b.sh <MASTER_ADDR=localhost> <NNODES=1> <NODE_RANK=0> sh scripts/llama2/0_pl_sft_13b.sh localhost 1 0 训练完成后,生成的权重文件保存路径为
依据开发者提供的标注数据及选择的场景,无需任何代码开发,自动生成满足用户精度要求的模型。
“数据处理”是指从大量的、杂乱无章的、难以理解的数据中抽取或者生成对某些特定的人们来说是有价值、有意义的数据。“数据处理”又分为“数据校验”、“数据清洗”、“数据选择”和“数据增强”四类。 “数据校验”表示对数据集进行校验,保证数据合法。
sh scripts/llama2/0_pl_lora_13b.sh <MASTER_ADDR=localhost> <NNODES=1> <NODE_RANK=0> sh scripts/llama2/0_pl_lora_13b.sh localhost 1 0 训练完成后,生成的权重文件保存路径为
执行多少次,则会在{service_name}下生成多少次结果。
执行多少次,则会在{service_name}下生成多少次结果。
当参数值>=TRAIN_ITERS时,生成模型仅保存经过TRAIN_ITERS次训练后的最后一个版本。 当参数值<TRAIN_ITERS时,生成模型会每经过SAVE_INTERVAL次,保存一次模型版本。
当参数值>=TRAIN_ITERS时,生成模型仅保存经过TRAIN_ITERS次训练后的最后一个版本。 当参数值<TRAIN_ITERS时,生成模型会每经过SAVE_INTERVAL次,保存一次模型版本。
当参数值>=TRAIN_ITERS时,生成模型仅保存经过TRAIN_ITERS次训练后的最后一个版本。 当参数值<TRAIN_ITERS时,生成模型会每经过SAVE_INTERVAL次,保存一次模型版本。
以转换yolov8n.pt为例,执行如下命令,执行完会在当前目录生成yolov8n.onnx文件。 python pt2onnx.py --pt yolov8n.pt onnx模型转mindir格式,执行如下命令,转换完成后会生成yolov8n.mindir文件。