检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
求开发MapReduce应用程序实现如下功能。 统计日志文件中本周末网购停留总时间超过2个小时的女性网民信息。 周末两天的日志文件第一列为姓名,第二列为性别,第三列为本次停留时间,单位为分钟,分隔符为“,”。 log1.txt:周六网民停留日志 LiuYang,female,20
求开发MapReduce应用程序实现如下功能: 统计日志文件中本周末网购停留总时间超过2个小时的女性网民信息。 周末两天的日志文件第一列为姓名,第二列为性别,第三列为本次停留时间,单位为分钟,分隔符为“,”。 log1.txt:周六网民停留日志 LiuYang,female,20
Key封装成一个List<Get>,然后请求这个列表以获取数据的查询方式。该方式能避免每个Row Key都发起一次请求。 HBase单表查询范围扫描优化 HBase单表查询范围扫描优化是指根据HBase的列的谓词条件尝试自动推断rowkey的起止地址,在tableScan的时候设置hbase scan起止地址从而提高访问性能。
单位:byte。 134217728(即128M) spark.files.openCostInBytes 打开文件的预估成本, 按照同一时间能够扫描的字节数来测量。当一个分区写入多个文件时使用。高估更好,这样小文件分区将比大文件分区更先被调度。 4M 父主题: Spark SQL性能调优
创建用户信息表user_info。 在用户信息中新增用户的学历、职称信息。 根据用户编号查询用户姓名和地址。 根据用户姓名进行查询。 用户销户,删除用户信息表中该用户的数据。 A业务结束后,删除用户信息表。 表1 用户信息 编号 姓名 性别 年龄 地址 12005000201 A 男 19 A城市 12005000202
单位:byte。 134217728(即128M) spark.files.openCostInBytes 打开文件的预估成本, 按照同一时间能够扫描的字节数来测量。当一个分区写入多个文件时使用。高估更好,这样小文件分区将比大文件分区更先被调度。 4M 父主题: Spark SQL性能调优
单位:byte。 134217728(即128M) spark.files.openCostInBytes 打开文件的预估成本, 按照同一时间能够扫描的字节数来测量。当一个分区写入多个文件时使用。高估更好,这样小文件分区将比大文件分区更先被调度。 4M 父主题: Spark SQL性能调优
单位:byte。 134217728(即128M) spark.files.openCostInBytes 打开文件的预估成本, 按照同一时间能够扫描的字节数来测量。当一个分区写入多个文件时使用。高估更好,这样小文件分区将比大文件分区更先被调度。 4M 父主题: Spark SQL性能调优
act”、雇员信息扩展表“employees_info_extended”。 雇员信息表“employees_info”的字段为雇员编号、姓名、支付薪水币种、薪水金额、缴税税种、工作地、入职时间,其中支付薪水币种“R”代表人民币,“D”代表美元。 雇员联络信息表“employee
创建用户信息表user_info。 在用户信息中新增用户的学历、职称信息。 根据用户编号查询用户姓名和地址。 根据用户姓名进行查询。 用户销户,删除用户信息表中该用户的数据。 A业务结束后,删除用户信息表。 表1 用户信息 编号 姓名 性别 年龄 地址 12005000201 A 男 19 A城市 12005000202
Compaction很有意义。 异步Compaction会进行如下两个步骤: 调度Compaction:由入湖作业完成,在这一步,Hudi扫描分区并选出待进行compaction的FileSlice,最后CompactionPlan会写入Hudi的Timeline。 执行Comp
Compaction很有意义。 异步Compaction会进行如下两个步骤: 调度Compaction:由入湖作业完成,在这一步,Hudi扫描分区并选出待进行compaction的FileSlice,最后CompactionPlan会写入Hudi的Timeline。 执行Comp
购买时,“防护主机数量”需跟MRS集群中的节点数量保持一致。 图3 防护主机数量 步骤二 安装Agent Linux版本 Windows版本 Agent是用于执行检测任务,全量扫描主机,实时监测主机的安全状态。 步骤三 开启主机防护 开启主机安全防护时,按照一台主机对应一个配额的关系进行绑定,只有绑定配额的主机才能正常防护。
普通表的操作: 创建用户信息表user_info。 在用户信息中新增用户的学历、职称信息。 根据用户编号查询用户姓名和地址。 A业务结束后,删除用户信息表。 表1 用户信息 编号 姓名 性别 年龄 地址 12005000201 A 男 19 A城市 12005000202 B 女 23 B城市
普通表的操作: 创建用户信息表user_info。 在用户信息中新增用户的学历、职称信息。 根据用户编号查询用户姓名和地址。 A业务结束后,删除用户信息表。 表1 用户信息 编号 姓名 性别 年龄 地址 12005000201 A 男 19 A城市 12005000202 B 女 23 B城市
普通表的操作: 创建用户信息表user_info。 在用户信息中新增用户的学历、职称信息。 根据用户编号查询用户姓名和地址。 A业务结束后,删除用户信息表。 表1 用户信息 编号 姓名 性别 年龄 地址 12005000201 A 男 19 A城市 12005000202 B 女 23 B城市
如果未指定列数据类型,则使用默认数据类型(字符串)。 “#”用于在两个索引详细信息之间进行分隔。 以下是一个可选参数: -Dscan.caching:在扫描数据表时的缓存行数。 如果不设置该参数,则默认值为1000。 为单个Region构建索引是为了修复损坏的索引。 此功能不应用于生成新索引。
如果未指定列数据类型,则使用默认数据类型(字符串)。 “#”用于在两个索引详细信息之间进行分隔。 以下是一个可选参数: -Dscan.caching:在扫描数据表时的缓存行数。 如果不设置该参数,则默认值为1000。 为单个Region构建索引是为了修复损坏的索引,此功能不应用于生成新索引。 创建HBase
定时进行小文件合并,减少单表的文件数量,提升元数据加载速率 Impala元数据和分区、文件数量正相关,太多分区会导致Impala元数据占用内存过大,刷新元数据时需要扫描的分区文件就越多,极大地降低查询效率。 建表时存储类型建议选择orc或者parquet orc和parquet是列式存储格式,读取效率更高
2.x版本支持),并且使用PreparedStatement查询。 亿级以上表数据查询必须设置分区分桶条件。 禁止对分区表执行全分区数据扫描操作。 Doris数据查询建议 一次insert into select数据超过1亿条后,建议拆分为多个insert into select语句执行,分成多个批次来执行。