检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
开源模型 SDK支持兼容OpenAI-API规范的开源模型。例如,用vllm框架使用OpenAI-API启动推理服务。当前鉴权方式支持AppCode鉴权和华为云的APIG简易认证方式。配置文件需要指定url和key,配置项为: sdk.llm.openai.url=https:/
约束与限制 受技术等多种因素制约,盘古大模型服务存在一些约束限制。 每个模型请求的最大Token数有所差异,详细请参见模型的基础信息。 模型所支持的训练数据量、数据格式要求请参见《用户指南》“准备盘古大模型训练数据集 > 模型训练所需数据量与数据格式要求”。
搜索增强 场景介绍 私有化场景下,大模型需要基于现存的私有数据提供服务。通过外挂知识库(Embedding、向量库)方式提供通用的、标准化的文档问答场景。 工程实现 准备知识库。 获取并安装SDK包。 在配置文件(llm.properties)中配置模型信息。 # 盘古模型IAM
搜索增强 场景介绍 私有化场景下,大模型需要基于现存的私有数据提供服务。通过外挂知识库(Embedding、向量库)方式提供通用的、标准化的文档问答场景。 工程实现 准备知识库。 获取并安装SDK包。 在配置文件(llm.properties)中配置模型信息。 # 盘古模型IAM
获取项目ID 从控制台获取项目ID 登录管理控制台。 在页面右上角的用户名的下拉列表中选择“我的凭证”。 图1 我的凭证 在“我的凭证”页面,获取项目ID(project_id),以及账号名、账号ID、IAM用户名和IAM用户ID。 在调用盘古API时,获取的项目id需要与盘古服
体验盘古驱动的应用百宝箱 应用百宝箱是盘古大模型为用户提供的便捷AI应用集,用户可在其中使用盘古大模型预置的场景应用和外部应用,轻松体验大模型开箱即用的强大能力。 体验盘古预置模型能力前,请先完成申请体验盘古大模型服务操作。 登录盘古大模型套件平台,在左侧导航栏中选择“应用百宝箱”,进入“应用百宝箱”页面。
体验盘古驱动的应用百宝箱 应用百宝箱是盘古大模型为用户提供的便捷AI应用集,用户可在其中使用盘古大模型预置的场景应用和外部应用,轻松体验大模型开箱即用的强大能力。 体验盘古预置模型能力前,请先完成申请体验盘古大模型服务操作。 登录盘古大模型套件平台,在左侧导航栏中选择“应用百宝箱”,进入“应用百宝箱”页面。
训练智能客服系统大模型需要考虑哪些方面 根据智能客服场景,建议从以下方面考虑: 根据企业实际服务的场景和积累的数据量,评估是否需要构建行业模型,如电商、金融等。 根据每个客户的金牌客服话术,可以对对话模型进行有监督微调,进一步优化其性能。 根据每个客户的实际对话知识,如帮助文档、
返回结果 状态码 请求发送以后,您会收到响应,包含状态码、响应消息头和消息体。 状态码是一组从1xx到5xx的数字代码,状态码表示了请求响应的状态,完整的状态码列表请参见状态码。 对于Pangu服务接口,如果调用后返回状态码为“200”,则表示请求成功。 响应消息头 对应请求消息
什么是盘古大模型 盘古大模型致力于深耕行业,打造多领域的行业大模型和能力集。其核心能力依托于盘古大模型套件平台,该平台是华为云推出的集数据管理、模型训练和模型部署为一体的一站式大模型开发与应用平台。平台提供了包括盘古大模型在内的多种大模型服务,支持大模型的定制开发,并提供覆盖全生命周期的大模型工具链。
盘古大模型套件使用流程 盘古大模型套件平台是一款功能强大、集成度高的大模型开发与应用平台。该平台全面支持大模型的数据管理、清洗与配比,涵盖预训练与微调功能。此外,平台还提供了强大的模型部署、评估与调用功能,确保模型能够在生产环境中高效应用。平台支持提示词工程、AI助手及SDK开发
最新动态 本文介绍了盘古大模型各特性版本的功能发布和对应的文档动态,新特性将在各个区域(Region)陆续发布,欢迎体验。 2024年9月 序号 功能名称 功能描述 阶段 相关文档 1 盘古大模型正式公测上线 盘古大模型是集数据管理、模型训练和模型部署于一体的一站式大模型开发与应
产品优势 海量训练数据 盘古大模型依托海量且多样化的训练数据,涵盖从日常对话到专业领域的广泛内容,帮助模型更好地理解和生成自然语言文本,适用于多个领域的业务应用。这些数据不仅丰富多样,还为模型提供了深度和广度的语言学习基础,使其能够生成更加自然、准确且符合语境的文本。 通过对海量
多轮问答场景,为什么微调后的效果不好 当您的目标任务是多轮问答,并且使用了多轮问答数据进行微调,微调后却发现多轮回答的效果不理想。这种情况可能是由于以下几个原因导致的,建议您依次排查: 数据格式:多轮问答场景需要按照指定的数据格式来构造,问题需要拼接上历史所有轮对话的问题和回答。
应用场景 智能客服 在政企场景中,传统的智能客服系统常受限于语义泛化能力和意图理解能力,导致用户需求难以准确捕捉,频繁转接至人工客服。这不仅增加了企业的运营成本,也影响了用户体验。盘古大模型的引入为这一问题提供了有效解决方案。 盘古大模型通过将客户知识数据转换为向量并存储在向量数
什么是AI助手 AI助手是一种基于NLP大模型构建的人工智能应用,它通过结合多种工具并利用大模型的对话问答、规划推理、逻辑判断等能力,来理解和回应用户的需求。 例如,需要构建一个企业助理应用,该应用需要具备预定会议室、创建在线文档和查询报销信息等功能。在构建此应用时,需要将预定会
购买盘古大模型套件 在购买盘古大模型套件之前,您可以通过“能力调测”功能体验平台预置的模型,请参见体验盘古预置模型能力。 盘古大模型套件在订购时分为模型资产和模型推理资产。 模型资产即盘古系列大模型,用户可以订购盘古基模型、功能模型、专业大模型。 基模型:基模型经过大规模数据的预
创建一个新的数据集 数据集是指用于训练模型或评估的一组相关数据样本。存储在OBS中的数据可以通过数据集的形式放置在到盘古平台中,便于管理。 在创建数据集之前,请先将数据上传至OBS平台。 上传数据至OBS 登录盘古大模型套件平台。 在左侧导航栏中选择“数据工程 > 数据管理”,单击界面右上角“创建数据集”。
调用AI助手API 获取AI助手API调用地址 登录盘古大模型套件平台。 左侧导航栏选择“应用开发 > AI助手”,选择需要运行的AI助手,单击“查看”。 图1 查看AI助手 在详情页面,AI助手API调用地址。 图2 获取调用地址 获取Token 本示例中,通过使用Postman软件获取Token。
模型训练所需数据量与数据格式要求 盘古大模型套件平台支持NLP大模型的训练。不同模型训练所需的数据量和数据格式有所差异,请基于数据要求提前准备训练数据。 数据量要求 自监督训练 在单次训练任务中,一个自监督训练数据集内,上传的数据文件数量不得超过1000个,单文件大小不得超过1G