检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
${container_name} bash 步骤二:ComfyUI部署 安装依赖和模型包 下载ComfyUI软件包。 下载ComfyUI源码 git clone https://github.com/comfyanonymous/ComfyUI.git 切换分支 cd ComfyUI
执行如下命令进入容器,并进入AutoAWQ目录下, vLLM使用transformers版本与awq冲突,需要切换conda环境,运行以下命令下载并安装AutoAWQ源码。 kubectl exec -it {pod_name} bash conda create --name awq --clone PyTorch-2
ascendcloud-aigc-6.3.904-*.tar.gz 说明: 包名中的*表示具体的时间戳,以包名的实际时间为准。 获取路径:Support-E网站。 说明: 如果没有下载权限,请联系您所在企业的华为方技术支持下载获取。 基础镜像 西南-贵阳一:swr.cn-southwest-2.myhuaweicloud
key='df', mode='w') pd.read_hdf('obs://wolfros-net/hdftest.h5') 通过重写pandas源码API的方式,将该API改造成支持OBS路径的形式。 写h5到OBS = 写h5到本地缓存 + 上传本地缓存到OBS + 删除本地缓存 从OBS读h5
执行如下命令进入容器,并进入AutoAWQ目录下, vLLM使用transformers版本与awq冲突,需要切换conda环境,运行以下命令下载并安装AutoAWQ源码。 kubectl exec -it {pod_name} bash conda create --name awq --clone PyTorch-2
false git clone代码仓,以diffusers为例(注意替换用户个人开发目录)。 # git clone diffusers源码,-b参数可指定分支,注意替换用户个人开发目录 cd /home_host/用户个人目录 mkdir sd cd sd git clone
表示代码运行状态,变为实心圆时,表示代码在运行中。 分享到AI Gallery。 代码化参数插件的使用 代码参数化插件可以降低Notebook案例的复杂度,用户无需感知复杂的源码,按需调整参数快速进行案例复现、模型训练等。该插件可用于定制Notebook案例,适用于比赛、教学等场景。 仅对Code cell类型新增了Edit
├──llm_inference # 推理代码 ├──ascend_vllm ├── vllm_npu # 推理源码 ├── ascend_vllm-0.4.2-py3-none-any.whl # 推理安装包
6f17d12dbd/LLaVA/playground/data/LLaVA-Pretrain目录下。 Step5 开始训练 进入解压后的源码包根目录。 cd ${container_work_dir}/multimodal_algorithm/LLAVA/llava-train
1。参考如下命令编写Dockerfile文件。镜像地址{image_url}请参见表2。 FROM {image_url} # 下载sd webui源码 RUN mkdir /home/ma-user/sdwebui RUN cd /home/ma-user/sdwebui && git config
6f17d12dbd/LLaVA/playground/data/eval目录下。 图2 MME评估集 Step6 开始推理 进入解压后的源码包根目录。 cd ${container_work_dir}/multimodal_algorithm/LLAVA/llava-infer
MaaS),使用Llama3-8B模型框架可以实现新闻自动分类,能够高效处理和分类大量新闻内容。 该解决方案可以应用于如下场景: 新闻门户网站: 自动将新闻内容归类到相应板块,如科技、体育或国际新闻,以提升用户体验和内容检索效率。 社交媒体平台: 对用户分享的新闻链接进行智能分类,帮助用户迅速定位到感兴趣的话题。
1。参考如下命令编写Dockerfile文件。镜像地址{image_url}请参见表2。 FROM {image_url} # 下载sd webui源码 RUN mkdir /home/ma-user/sdwebui RUN cd /home/ma-user/sdwebui && git config
将获取到的Wav2Lip Ascend软件包AscendCloud-AIGC-*.zip文件上传到容器的/home/ma-user目录下。获取路径:Support网站。 解压AscendCloud-AIGC-*.zip文件,解压后将里面指定文件与对应Wave2Lip文件进行替换。 cd /home/ma-user
├──llm_inference # 推理代码 ├──ascend_vllm ├── vllm_npu # 推理源码 ├── ascend_vllm-0.5.0-py3-none-any.whl # 推理安装包
├──llm_inference # 推理代码 ├──ascend_vllm ├── vllm_npu # 推理源码 ├── ascend_vllm-0.5.0-py3-none-any.whl # 推理安装包
模型的仓库,可以直接下载onnx模型。下面介绍方式一如何操作,如果采用方式二,可以跳过此步骤。 通过git下载diffusers对应版本的源码。 git clone https://github.com/huggingface/diffusers.git -b v0.11.1 在
├──llm_inference # 推理代码 ├──ascend_vllm ├── vllm_npu # 推理源码 ├── ascend_vllm-0.6.0-py3-none-any.whl # 推理安装包
(https://github.com/AUTOMATIC1111/stable-diffusion-webui)。 如果是基于其他开源,需要附带开源代码仓地址。 - 具体使用库 例如: 使用了哪个pipeline (例如lpw_stable_diffusion.py)。 使用了哪个huggingface的模型
├──llm_inference # 推理代码 ├──ascend_vllm ├── vllm_npu # 推理源码 ├── ascend_vllm-0.6.0-py3-none-any.whl # 推理安装包