检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
选择需要发布的数据集。 许可证类型 根据业务需求和数据集类型选择合适的许可证类型。 单击许可证类型后面的感叹号可以查看许可证详情。 说明: 部分许可证网站说明地址是海外网站,用户可能会因网络限制无法访问。 谁可以看 设置此数据集的公开权限。可选值有: “公开”:表示所有使用AI Gallery的用户都可以查看且使用该资产。
例如:${container_work_dir}/,然后解压到工作目录下。 步骤五:下载ComfyUI代码并安装依赖 下载ComfyUI源码 从github下载ComfyUI代码并切换到0.2.2分支。 cd ${container_work_dir} git clone -c
├──llm_inference # 推理代码 ├──ascend_vllm ├── vllm_npu # 推理源码 ├── ascend_vllm-0.6.0-py3-none-any.whl # 推理安装包
├──llm_inference # 推理代码 ├──ascend_vllm ├── vllm_npu # 推理源码 ├── ascend_vllm-0.5.0-py3-none-any.whl # 推理安装包
├──llm_inference # 推理代码 ├──ascend_vllm ├── vllm_npu # 推理源码 ├── ascend_vllm-0.5.0-py3-none-any.whl # 推理安装包
├──llm_inference # 推理代码 ├──ascend_vllm ├── vllm_npu # 推理源码 ├── ascend_vllm-0.6.0-py3-none-any.whl # 推理安装包
├──llm_inference # 推理代码 ├──ascend_vllm ├── vllm_npu # 推理源码 ├── ascend_vllm-0.6.0-py3-none-any.whl # 推理安装包
sort=trending&search=QWEN+AWQ 方式二:使用AutoAWQ量化工具进行量化。 1、在容器中使用ma-user用户运行以下命令下载并安装AutoAWQ源码。 bash build.sh 2、运行“examples/quantize.py”文件进行模型量化,量化时间和模型大小有关,预计30分钟~3小时。
├──llm_inference # 推理代码 ├──ascend_vllm ├── vllm_npu # 推理源码 ├── ascend_vllm-0.6.0-py3-none-any.whl # 推理安装包
com/ascend/MindSpeed.git cd MindSpeed git checkout 4ea42a23 cd .. 完整的源码目录结构如下: |——AscendCloud-LLM |──llm_train # 模型训练代码包
在ModelArts的Notebook中实例重新启动后要怎么连接? 在ModelArts的Notebook中使用VS Code调试代码无法进入源码怎么办? 在ModelArts的Notebook中使用VS Code如何查看远端日志? 在ModelArts的Notebook中如何打开VS
sort=trending&search=QWEN+AWQ 方式二:使用AutoAWQ量化工具进行量化。 在容器中使用ma-user用户运行以下命令下载并安装AutoAWQ源码。 git clone -b v0.2.5 https://github.com/casper-hansen/AutoAWQ.git AutoAWQ-0
├──llm_inference # 推理代码 ├──ascend_vllm ├── vllm_npu # 推理源码 ├── ascend_vllm-0.6.3-py3-none-any.whl # 推理安装包
├──llm_inference # 推理代码 ├──ascend_vllm ├── vllm_npu # 推理源码 ├── ascend_vllm-0.6.3-py3-none-any.whl # 推理安装包
sort=trending&search=QWEN+AWQ 方式二:使用AutoAWQ量化工具进行量化。 在Notebook中运行以下命令下载并安装AutoAWQ源码。 git clone -b v0.2.5 https://github.com/casper-hansen/AutoAWQ.git AutoAWQ-0
com/ascend/MindSpeed.git cd MindSpeed git checkout 4ea42a23 cd .. 完整的源码目录结构如下: |——AscendCloud-LLM |──llm_train # 模型训练代码包
1、在容器中使用ma-user用户, vLLM使用transformers版本与awq冲突,需要切换conda环境,运行以下命令下载并安装AutoAWQ源码。 conda create --name awq --clone PyTorch-2.1.0 conda activate awq pip
1、在容器中使用ma-user用户, vLLM使用transformers版本与awq冲突,需要切换conda环境,运行以下命令下载并安装AutoAWQ源码。 conda create --name awq --clone PyTorch-2.1.0 conda activate awq pip
1、在容器中使用ma-user用户, vLLM使用transformers版本与awq冲突,需要切换conda环境,运行以下命令下载并安装AutoAWQ源码。 conda create --name awq --clone PyTorch-2.1.0 conda activate awq pip
求请参见安装文件规范。 安装文件规范 请根据依赖包的类型,在代码目录下放置对应文件: 依赖包为开源安装包时 暂时不支持直接从github的源码中安装。 在“代码目录”中创建一个命名为“pip-requirements.txt”的文件,并且在文件中写明依赖包的包名及其版本号,格式为“包名==版本号”。