检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
增和BFS遍历顺序(temporal bfs算法),搜索周围与之相关联的点,输出对应各节点的到达时间以及和源起点之间的距离。具体操作步骤如下: 在左侧“动态图”操作区的“动态拓展”模块内填写参数: 开始和结束的时间以及属性值在上述章节时间轴设置中已经设置完成,如果要修改参数,单击
从OBS导入到GES等复杂的中间步骤,极大地方便了用户数据入图的操作。 注意事项 数据迁移会把数据库各个表中的全部数据作为点或者边数据集导入到图实例,因此需要确保数据库中的表已经被处理为点或者边数据。 点边表中支持的数据类型,参考一般图数据格式章节中的属性说明。 点表格式:点ID
根据网页(节点)之间相互的超链接进行计算的技术,用来体现网页(节点)的相关性和重要性。 如果一个网页被很多其他网页链接到,说明这个网页比较重要,也就是其PageRank值会相对较高。 如果一个PageRank值很高的网页链接到其他网页,那么被链接到的网页的PageRank值会相应地提高。
根据网页(节点)之间相互的超链接进行计算的技术,用来体现网页(节点)的相关性和重要性。 如果一个网页被很多其他网页链接到,说明这个网页比较重要,也就是其PageRank值会相对较高。 如果一个PageRank值很高的网页链接到其他网页,那么被链接到的网页的PageRank值会相应地提高。
调用API获取项目ID 项目ID可以通过调用查询指定条件下的项目信息API获取。 获取项目ID的接口为“GET https://{Endpoint}/v3/projects”,其中{Endpoint}为IAM的终端节点,可以从地区和终端节点获取。 接口的认证鉴权请参见管理面API构造请求。 响应
角色权限 角色是IAM最初提供的一种根据用户的工作职能定义权限的粗粒度授权机制。只包含系统角色,不可自定义角色。 表1 GES系统角色 角色名称 描述 Tenant Guest 普通租户用户。 操作权限:可以对GES资源执行查看操作。 作用范围:项目级服务。 GES Administrator
Service,简称GES),使用华为自研的EYWA内核,是针对以“关系”为基础的“图”结构数据,进行查询、分析的服务。广泛应用于社交关系分析、营销推荐、舆情及社会化聆听、信息传播、防欺诈等具有丰富关系数据的场景。 功能介绍 GES服务的功能主要有以下5个方面: 丰富的领域算法 支持PageRa
添加自定义操作 通过调用API的方式来添加自定义操作,支持您在界面上定义自己的快捷操作集。 操作步骤 在图引擎编辑器左侧的操作区内,单击“编辑”后,下方会出现“新增操作”的按钮,单击此按钮。 图1 新增操作 在弹出的新增操作框中填写以下参数: 自定义操作名称:填写名称,方便后续快速查找和使用。
从OBS中导入备份 将导出到OBS的备份文件导入到图中,导入成功后使用该备份还原图实例。 持久化的图暂不支持该功能。 只有2.3.16及以上版本的内存版的图支持该功能,低版本的图需要您先进行升级图操作,升级到最新版本再进行导入。 具体操作步骤如下: 登录图引擎服务管理控制台,在左侧导航栏选择“备份管理”。
云监控服务可以对GES的运行状态进行日常监控。您可以通过云监控管理控制台,直观地查看各项监控指标。 监控数据的获取与传输会花费一定时间,因此,云监控数据显示的是当前时间5~10分钟前的状态。如果您的图刚创建完成,请等待5~10分钟后查看监控数据。 前提条件 创建的图运行状态正常运行。
Propagation)是一种基于图的半监督学习方法,其基本思路是用已标记节点的标签信息去预测未标记节点的标签信息。利用样本间的关系建图,节点包括已标注和未标注数据,其边表示两个节点的相似度,节点的标签按相似度传递给其他节点。标签数据就像是一个源头,可以对无标签数据进行标注,节点的相似度越大,标签越容易传播。
允许GES调用您的VPC服务。例如,发生故障转移时,GES使用这个委托将您的弹性IP绑定到主GES负载均衡实例。 受限于历史上IAM1.0只有RBAC授权的限制,这两种场景委托权限比较大,GES服务实际上并不需要这么大的权限。 为了优化委托的权限,GES在界面上提供了一键优化的功能,可以
询语言外,还为用户提供了图数据的持久化功能,将用户写入的数据落盘,通过多副本和硬件冗余等方式,实现高可用和快速故障恢复,目前持久化版已完成千亿和万亿的大规模图存储和查询验证。 现将图规格为持久化版的图支持的API单独成章节,方便您查阅和使用。 支持的数据类型 类型 描述 char
k跳算法(k-hop) 概述 k跳算法(k-hop)从起点出发,通过宽度优先搜索(BFS),找出k层与之关联的所有节点。找到的子图称为起点的“ego-net”。k跳算法会返回ego-net中节点的个数。 适用场景 k跳算法(k-hop)适用于关系发现、影响力预测、好友推荐等场景。 参数说明 表1
理”。 在图管理列表中,选择需删除的图,在“操作”列选择“更多”>“清空数据”。 图1 清空数据 在弹出的确认提示框中,勾选是否“清空图中的元数据”(持久化版的图需要先选择图名称)。 勾选“清空图中的元数据”后,会重置图,清空所有数据和运行中的任务。 元数据清空后不可恢复,请谨慎操作。
Shortest Path)寻找两点间满足过滤条件的最短路径,如有多条,返回任意一条最短路径。 适用场景 带一般过滤条件的最短路径算法(Filtered Shortest Path)适用于路径设计、网络规划等场景,通过对点边条件的过滤,控制最短路径的生成。 参数说明 表1 带一般过滤条件最短路径算法(Filtered
标签:统计当前画布中所有的标签名称和对应的点边数量。 节点权重Top10:当前图中边数量最多的十个节点。 以下图统计信息为例,图中共有7个标签。标签为FUND_PRODV的点有5个,标签为FIN_PRODV的点有3个。 图中权重最大的是节点id为1101的点,共有5条边。排名第十的是节点id为1103的点,共有1条边。
Match<Vertex>的gather Match<Vertex>上的Gather操作会将传入的Lambda函数中定义的所有操作作用在Match匹配的点的边上。 点匹配器Match仅接收包含两个输入参数的Lambda表达式。第一个参数指代边上的source点,第二个参数指代边上的target点。
根据输入参数,执行BigClam算法。 BigClam算法是一种重叠社区发现算法,该算法将节点与社区之间的关系建模为一个二部图,假设图中节点的连边是根据社区关系生成的,其可以检测出图中的重叠社区。 URI POST /ges/v1.0/{project_id}/hyg/{graph_name}/algorithm
功能介绍 根据输入参数,执行infomap算法。 infomap算法是一种基于信息论的社区发现算法,该算法在效率和效果上都表现较好,并且能够发现层次性的社区结构,其优化目标为找到最优的社区结构,使节点的层次编码长度最小。 URI POST /ges/v1.0/{project_id}