检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
1 0; # 单机训练执行命令 步骤四 根据config.yaml启动作业 启动作业命令如下。首先会根据config.yaml创建pod,继而在pod容器内自动启动训练作业。 kubectl apply -f config.yaml 启动后,可通过以下命令获取所有已创建的pod信息
1 0; # 单机训练执行命令 步骤四 根据config.yaml启动作业 启动作业命令如下。首先会根据config.yaml创建pod,继而在pod容器内自动启动训练作业。 kubectl apply -f config.yaml 启动后,可通过以下命令获取所有已创建的pod信息
1 0; # 单机训练执行命令 步骤四 根据config.yaml启动作业 启动作业命令如下。首先会根据config.yaml创建pod,继而在pod容器内自动启动训练作业。 kubectl apply -f config.yaml 启动后,可通过以下命令获取所有已创建的pod信息
系统能被打包成一个简单的可移植的包,这个包可以被用来在任何其他运行Docker的机器上使用。 Kubernetes Kubernetes是一个开源的容器编排部署管理平台,用于管理云平台中多个主机上的容器化应用。Kubernetes的目标是让部署容器化的应用简单并且高效,Kuber
s_data.sh脚本,将执行的python命令复制下来,修改环境变量的值。在Notebook进入到 /home/ma-user/work/llm_train/AscendSpeed/ModelLink 路径中,再执行python命令。 方法二:用户在Notebook中直接编辑s
s_data.sh脚本,将执行的python命令复制下来,修改环境变量的值。在Notebook进入到 /home/ma-user/work/llm_train/AscendSpeed/ModelLink 路径中,再执行python命令。 方法二:用户在Notebook中直接编辑s
s_data.sh脚本,将执行的python命令复制下来,修改环境变量的值。在Notebook进入到 /home/ma-user/work/llm_train/AscendSpeed/ModelLink 路径中,再执行python命令。 方法二:用户在Notebook中直接编辑s
1 0; # 单机训练执行命令 步骤四 根据config.yaml启动作业 启动作业命令如下。首先会根据config.yaml创建pod,继而在pod容器内自动启动训练作业。 kubectl apply -f config.yaml 启动后,可通过以下命令获取所有已创建的pod信息
通过SSH工具远程使用Notebook 管理Notebook实例 使用CodeLab免费体验Notebook ModelArts CLI命令参考 在Notebook中使用Moxing命令
安装报错 “xxx.whl”文件无法安装,需要您按照如下步骤排查: 当出现“xxx.whl”文件无法安装,在启动文件中添加如下代码,查看当前pip命令支持的文件名和版本。 import pip print(pip.pep425tags.get_supported()) 获取到支持的文件名和版本如下:
<python版本> - <操作系统版本> - <CPU架构> 当前支持自定义模型启动命令,预置AI引擎都有默认的启动命令,如非必要无需改动 表1 支持的常用引擎及其Runtime以及默认启动命令 模型使用的引擎类型 支持的运行环境(Runtime) 注意事项 TensorFlow
params结构所示。从配置文件的apis读取,用户提供“initial_config”字段即可,可不填该字段。非模板参数 cmd 否 String 镜像启动命令 deployment_constraints 否 deployment_constraints object 模型部署约束(tag:hc
在后续训练步骤中,训练作业启动命令中包含sh scripts/install.sh,该命令用于git clone完整的代码包和安装必要的依赖包,每次启动训练作业时会执行该命令安装。 您可以在Notebook中导入完代码之后,在Notebook运行sh scripts/install.sh命令提前下载完
Python依赖包本地安装:进入pip文件所在的路径,并运行安装命令。如下列所示。 pip install numpy pip install transformers_stream_generator ... 代码安装:访问 scripts/install.sh 文件,在最后执行的命令中需要分别进入ModelLi
SSH登录机器后,检查NPU卡状态。运行如下命令,返回NPU设备信息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数 如出现
R}:${PYTHONPATH} 选择的启动文件将会被系统自动以python命令直接启动,因此请确保镜像中的Python命令为您预期的Python环境。通过系统自动注入的PATH环境变量,可以参考下述命令确认训练作业最终使用的Python版本。 export MA_HOME=/home/ma-user;
“数据校验”表示对数据集进行校验,保证数据合法。 “数据清洗”表示对数据进行去噪、纠错或补全的过程。 “数据选择”表示从全量数据中选择数据子集的过程。 “数据增强”表示通过简单的数据扩增例如缩放、裁剪、变换、合成等操作直接或间接的方式增加数据量。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API
则执行下述命令卸载nvidia-fabricmanager。 dpkg -l | grep nvidia-fabricmanager # 如果有nvidia-fabricmanager软件,将其卸载 # 如果无nvidia-fabricmanager软件,请跳过此命令 sudo apt-get
SSH登录机器后,检查NPU卡状态。运行如下命令,返回NPU设备信息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数 如出现
在本地IDE中打开“Terminal > New Terminal”,执行如下命令。 pip install -r /home/ma-user/work/models/official/cv/resnet/requirements.txt 图5 执行命令 云端调试与运行。 打开训练文件。文件所在路径为“/