检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
online_services 是 List 需要进行效果评估的在线服务; indicators 是 List 请参见表3,需要统计的指标列表及其对应的参数。 start_time 是 Long 被统计数据的起始时间戳。 end_time 是 Long 被统计数据的终止时间戳。 interval 是 Double
过滤规则 过滤规则用于配置候选集的过滤方式,使之不进入候选集。对于每个需要过滤的行为,生成用户具有该行为的物品的列表。再对同用户的每种行为的物品列表进行“与”或者“或”的关系,最终生成用户-物品过滤表。 表1 过滤规则参数说明 参数名称 说明 名称 自定义过滤规则名称。由中文、英
特征名称:值为时间戳(10位)的特征的名称,任务会根据此特征对候选集进行排序。 推荐天数:推荐数据的时间段,该时间段从当前开始往前推N天,默认15天。 默认热度排序。 候选集最大长度 生成候选集的最大长度,每次计算更新的候选集中的个数不会超过最大值。 默认50。 候选集的召回策略 召回候选集的策略。
computing_resource Object 资源列表集,请参见表3。 error_msg String 请求失败时的错误信息,请求成功时无此字段。 error_code String 请求失败时的错误码,请求成功时无此字段。 表3 computing_resource参数说明 参数名称 参数类型
宽表条目数,行为数据去重以后的数目。 user_complete_degree Double 用户齐全度,一条行为中的用户是否在产生这条行为的时候拥有画像。 item_complete_degree Double 物品齐全度,一条行为中的物品是否在这条行为产生的时候拥有画像。 bhv_count
修改数据源内容 功能介绍 修改指定数据源的配置内容。 调试 您可以在API Explorer中调试该接口。 URI PUT /v2.0/{project_id}/workspaces/{workspace_id}/data-sources/{datasource_id} 表1 路径参数
computing_resources List 资源列表集,请参见表3。 error_msg String 请求失败时的错误信息,请求成功时无此字段。 error_code String 请求失败时的错误码,请求成功时无此字段。 表3 computing_resources参数说明 参数名称 参数类型
在购物车场景,使用的召回候选集来自于离线计算基于物品的协同过滤生成的候选集,而为了尽可能保证推荐的匹配度,要求推荐出来的物品尽可能的与用户性别、体质和年龄等属性吻合,所以考虑基于用户性别、体质和年龄等属性用标签索引得到的满足条件物品列表item1, 对离线生成的items2进行如
数值稳定常量:为保证数值稳定而设置的一个微小常量。默认1e-8。 adagrad:自适应梯度算法 对每个不同的参数调整不同的学习率,对频繁变化的参数以更小的步长进行更新,而稀疏的参数以更大的步长进行更新。 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.001。 初
创建数据源 功能介绍 在指定的工作空间下面创建一个新的数据源。 调试 您可以在API Explorer中调试该接口。 URI POST /v2.0/{project_id}/workspaces/{workspace_id}/data-sources 表1 路径参数 参数 是否必选
据用户的长短期行为表现出来的兴趣进行学习与训练,结合长短期兴趣进行个性化推荐。 关联推荐主要应用于固定的物品的关联推荐,根据已关联的物品对相关的内容和行为进行挖掘,网状匹配相关联的物品,进行有关联度的推荐。 热门推荐主要应用于当前用户浏览最多的物品内容,如实时搜索量前几的新闻或者物品。
数据源id。 ds_config 是 ds_config object 数据源配置。 scene_name 是 String 场景名称,1-64位的字母、数字、下划线、中划线组合。 最小长度:1 最大长度:64 specs_config 是 SpecsConfig object 计算规格。
查询作业列表 功能介绍 该接口用于查询作业列表。 可支持查询作业的类型包括:组合作业、召回作业、过滤作业、特征工程作业、排序作业、近线作业和效果评估任务。 URI GET/v1/{project_id}/jobs?type={type}¤t-page={current
1]之间,是机器学习领域里常用的二分类算法。LR算法参数请参见逻辑斯蒂回归。 因子分解机算法是一种基于矩阵分解的机器学习算法,能够自动进行二阶特征组合、学习特征之间的关系,无需人工经验干预,同时能够解决组合特征稀疏的问题。FM算法参数请参见因子分解机。 域感知因子分解机是因子分解机的改进版本,因子
响应参数说明 参数名称 是否必选 参数类型 说明 is_success 是 Boolean 是否成功。 job 是 Object 请参见表3,返回的作业信息。 表3 job参数说明 参数名称 是否必选 参数类型 说明 job_id 是 String 训练作业ID。 job_name 是 String
看了某个物品的时候,会推荐最相似/最相关的物品。 “基于物品推荐用户”:某些物品的属性、描述很相似,或者经常被一起购买。如房产平台会计算物品之间的相似或关联程度,当用户查看某个物品的时候,会推荐同时拥有该类型房源的房产经纪人。 服务类型 选择您需要的服务类型。 “推荐引擎”:推荐
platform_parameter 是 JSON 请参见表4,平台参数。 computing_resource 否 String 指定DLI运行任务的资源规格。 config_load_path 是 String 读取配置源路径。 表4 platform_parameter参数说明 参数名称
开始和结束,长度为1~64个字符。 描述 对于特征工程的描述信息。 待提取用户特征 排序模型需要经特征工程处理后的数据, 选择排序模型需要的用户特征, 未选择的用户特征将不会被处理,即排序模块将忽略这些特征。 说明: 离散的区间个数不能超过100个,请您根据业务需求合理分配参数值。
您可以根据业务需要,选择合适的召回策略。召回策略用于配置离线计算逻辑,通过启动离线计算任务进行候选推荐结果集的生成。 各个召回策略的详细参数设置和输入输出请单击下方链接查看。 基于特定行为热度推荐 基于综合行为热度推荐 基于物品的协同过滤推荐 基于用户的协同过滤推荐 基于交替最小二乘的矩阵分解推荐
在“test-data”文件夹下,将behavior.txt中的每条数据的actionTime字段的值修改到当前时间附近。将item.txt中的每条数据的publishTime字段的值修改到当前时间附近,将item.txt中的每条数据的expireTime字段的值修改成大于当前时间的值,避免数据因为过期被过滤掉。