检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
镜像选择“TensorFlow-1.13”或“TensorFlow-1.15”。 打开Notebook,在JupyterLab中执行!pip list查看Keras的版本。 图1 查看Keras引擎版本 父主题: Standard Notebook
DevServer驱动版本要求23.0.5 训练支持的模型列表 本方案支持以下模型的训练,如表1所示。 表1 支持的模型列表及权重文件地址 支持模型 Template 支持模型参数量 权重文件获取地址 Llama3 llama3 llama3-8b https://huggingface.co/meta-l
打开已创建的Notebook实例,选择Notebook的python-3.9.10,即可编辑Untitled.ipynb文件。编写以下代码,并运行Untitled.ipynb文件(用于将OBS中的数据导入至云硬盘EVS)。 import moxing as mox #obs存放数据路径
将requirements.txt中的Unidecode改为unidecode。 建议与总结 您可以在训练代码里添加一行: os.system('pip list') 然后运行训练作业,查看日志中是否有所需要的模块。 父主题: 业务代码问题
thQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant #量化工具 ├── ascend_aut
本章节介绍如何使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant #量化工具 ├── ascend_aut
thQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant #量化工具 ├── ascend_aut
thQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant #量化工具 ├── ascend_aut
本章节介绍如何使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant #量化工具 ├── ascend_aut
打开已创建的Notebook实例,选择Notebook的python-3.9.10,即可编辑Untitled.ipynb文件。编写以下代码,并运行Untitled.ipynb文件(用于将OBS中的数据导入至云硬盘EVS)。 import moxing as mox #obs存放数据路径
打开已创建的Notebook实例,选择Notebook的python-3.9.10,即可编辑Untitled.ipynb文件。编写以下代码,并运行Untitled.ipynb文件(用于将OBS中的数据导入至云硬盘EVS)。 import moxing as mox #obs存放数据路径
打开已创建的Notebook实例,选择Notebook的python-3.9.10,即可编辑Untitled.ipynb文件。编写以下代码,并运行Untitled.ipynb文件(用于将OBS中的数据导入至云硬盘EVS)。 import moxing as mox #obs存放数据路径
打开已创建的Notebook实例,选择Notebook的python-3.9.10,即可编辑Untitled.ipynb文件。编写以下代码,并运行Untitled.ipynb文件(用于将OBS中的数据导入至云硬盘EVS)。 import moxing as mox #obs存放数据路径
格式的模板: 支持Alpaca格式的数据,DATA_TYPE 环境变量需设置为 AlpacaStyleInstructionHandler 支持Sharegpt格式的数据,DATA_TYPE 环境变量需设置为 SharegptStyleInstructionHandler 已支持的系列模型模板:
thQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant #量化工具 ├── ascend_aut
本章节介绍如何使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant #量化工具 ├── ascend_aut
thQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant #量化工具 ├── ascend_aut
格式的模板: 支持Alpaca格式的数据,DATA_TYPE 环境变量需设置为 AlpacaStyleInstructionHandler 支持Sharegpt格式的数据,DATA_TYPE 环境变量需设置为 SharegptStyleInstructionHandler 已支持的系列模型模板:
911版本仅是使用run_type来指定训练的类型,只能区分 预训练、全参微调和lora微调但实际上预训练和sft是训练的不同阶段,全参、lora是训练参数设置方式。为了更加明确的区分不同策略,以及和llama-factory对齐,6.3.912版本调整以下参数: 新增 STAGE,表示训练的阶段,可以选择的参数包括:
model_status 否 String 模型状态,可根据模型的“publishing”、“published”、“failed”三种状态执行查询。 description 否 String 描述信息,可支持模糊匹配。 offset 否 Integer 指定要查询页的索引,默认为“0”。 limit 否