检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
文件已添加指定的用户和用户组,您直接使用即可。 用户只需要设置uid为1000的用户ma-user和gid为100的用户组ma-group,并使ma-user有对应目录的读写执行权限,其他如启动cmd不需要关心,无需设置或更改。 vim一个Dockerfile文件,添加第三方镜像
仅使用新版专属资源池训练时才支持设置训练作业优先级。公共资源池和旧版专属资源池均不支持设置训练作业优先级。 作业优先级取值为1~3,默认优先级为1,最高优先级为3。默认用户权限可选择优先级1和2,配置了“设置作业为高优先级权限”的用户可选择优先级1~3。 如何设置训练作业优先级 在创建训
service_id:xxx,然后单击“确定”。 监控对象设置完成后,选择“统计方式”和“统计周期”。 “告警条件设置”:触发条件根据实际需求设置。 图1 监控对象指标设置 图2 设置指标统计方式 图3 告警条件设置 设置告警通知,单击“立即创建”。 “告警方式”:选择“直接告警”
选择下拉框中支持的操作系统。 配置方式 选择重置节点的配置方式。 按节点比例:重置任务包含多个节点时,可以设置同时被重置节点的最高比例。 按实例数量:重置任务包含多个节点时,可以设置同时被重置节点的最大个数。 驱动版本 可以在下拉框中指定重置节点的驱动版本。 图1 重置节点 单击“操
最小长度,可以根据实际需求设置。 --max-input:输入tokens最大长度,可以根据实际需求设置。 --avg-input:输入tokens长度平均值,可以根据实际需求设置。 --std-input:输入tokens长度方差,可以根据实际需求设置。 --min-outpu
最小长度,可以根据实际需求设置。 --max-input:输入tokens最大长度,可以根据实际需求设置。 --avg-input:输入tokens长度平均值,可以根据实际需求设置。 --std-input:输入tokens长度方差,可以根据实际需求设置。 --min-outpu
配置。 表1 部署模型服务 参数 说明 服务设置 服务名称 自定义部署模型服务的名称。 支持1~64位,以中文、大小写字母开头,只包含中文、大小写字母、数字、中划线、下划线的名称。 描述 部署模型服务的简介。支持256字符。 模型设置 部署模型 单击“选择模型”,选择“模型广场”或“我的模型”下面的模型。
具体步骤请参考挂载NFS协议类型文件系统到云服务器(Linux)。 为避免已挂载文件系统的云服务器重启后,挂载信息丢失,您可以在云服务器设置重启时进行自动挂载,具体步骤请参考服务器重启后自动挂载指南。 使用对象存储服务OBS作为存储 若使用OBS服务作为存储方案,推荐使用“并行
Gallery中订阅的算法不支持另存为新算法。 训练作业卡死检测目前仅支持资源类型为GPU的训练作业。 仅使用新版专属资源池训练时才支持设置训练作业优先级。公共资源池和旧版专属资源池均不支持设置训练作业优先级。 仅支持PyTorch和MindSpore框架的分布式训练和调测,如果MindSpore要进行多
ModelArts支持设置子账号的细粒度权限、不同工作空间之间资源隔离。ModelArts工作空间帮您实现项目资源隔离、多项目分开结算等功能。 如果你开通了企业项目管理服务的权限,可以在创建工作空间的时候绑定企业项目ID,并在企业项目下添加用户组,为不同的用户组设置细粒度权限供组里的用户使用。
cache/huggingface/dataset”,Huggingface缓存目录空间不足导致出现该报错。 处理方法 通过环境变量“HF_HOME”设置Huggingface的缓存目录为比较大的路径,或者对“.~/cache”目录扩容。 父主题: 常见问题
最小长度,可以根据实际需求设置。 --max-input:输入tokens最大长度,可以根据实际需求设置。 --avg-input:输入tokens长度平均值,可以根据实际需求设置。 --std-input:输入tokens长度方差,可以根据实际需求设置。 --min-outpu
docker.com | sh sudo systemctl --now enable docker 步骤二:安装NVIDIA容器工具集 设置仓库地址和GPG key: distribution=$(. /etc/os-release;echo $ID$VERSION_ID) \
GP Vnt1裸金属服务器用PyTorch报错CUDA initialization:CUDA unknown error 问题现象 在Vnt1 GPU裸金属服务器(Ubuntu18.04系统),安装NVIDIA 470+CUDA 11.4后使用“nvidia-smi”和“nvcc
最小长度,可以根据实际需求设置。 --max-input:输入tokens最大长度,可以根据实际需求设置。 --avg-input:输入tokens长度平均值,可以根据实际需求设置。 --std-input:输入tokens长度方差,可以根据实际需求设置。 --min-outpu
WorkflowStorage objects Workflow包含的统一存储定义。 labels 否 Array of strings 为Workflow工作流设置的标签。 assets 否 Array of WorkflowAsset objects 工作流绑定的资产。 sub_graphs 否 Array
在定位精度问题之前,首先需要排除训练脚本及参数配置等差异的干扰。目前大部分精度无法对齐的问题都是由于模型超参数、Python三方库版本、模型源码等与标杆环境(GPU/CPU)设置的不一致导致,为了在定位过程中少走弯路,需要在定位前先对训练环境及代码做有效排查。此外,问题定位主要基于GPU环境和NPU环境上运行的过程
最小长度,可以根据实际需求设置。 --max-input:输入tokens最大长度,可以根据实际需求设置。 --avg-input:输入tokens长度平均值,可以根据实际需求设置。 --std-input:输入tokens长度方差,可以根据实际需求设置。 --min-outpu
最小长度,可以根据实际需求设置。 --max-input:输入tokens最大长度,可以根据实际需求设置。 --avg-input:输入tokens长度平均值,可以根据实际需求设置。 --std-input:输入tokens长度方差,可以根据实际需求设置。 --min-outpu
最小长度,可以根据实际需求设置。 --max-input:输入tokens最大长度,可以根据实际需求设置。 --avg-input:输入tokens长度平均值,可以根据实际需求设置。 --std-input:输入tokens长度方差,可以根据实际需求设置。 --min-outpu