检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
是否带其他约束,取值为true或false,默认取值为true。 false:不带额外约束,即找到的共同邻居为起点集和终点集对应邻域的交集。 true,带额外约束,这里指找到的共同邻居不仅是起点集和终点集邻域的交集,同时共同邻居集合中的每个点都至少有2个以上邻居节点在起点集和终点集中。 响应参数 参数 类型
根据输入参数,执行link_prediction算法。 关联预测算法(link_prediction)给定两个节点,根据Jaccard度量方法计算两个节点的相似程度,预测节点之间的紧密关系。 URI POST /ges/v1.0/{project_id}/hyg/{graph_name}/algorithm
rue,选择一个不依赖于Inedge的算法实现版本计算输出,性能会下降;若directed=false,会报错。 weight 否 String 边上权重。取值为:空或字符串,默认值为空。 空:边上的权重、距离默认为1。 字符串:对应的边上的属性将作为权重,当某边没有对应属性时,权重将默认为1。
通过调用IAM服务获取用户Token接口获取(响应消息头中X-Subject-Token的值)。 表3 请求Body参数 参数 是否必选 参数类型 描述 metadata_path 是 String 元数据存储地址。 name 是 String 元数据的名字,限制为1-64个字符,且只能包含字母,数字或下划线。
判断左值(标签、id、属性值)是否在右值(必须是array类型)中,和内存版的左值和右值是否有交集的语义有区别。 不支持CONTAIN、NOTCONTAIN、SUBSET等集合运算。 匹配:右值是左值的PREFIX(前缀)、NOTPREFIX(非前缀)、 SUFFIX(后缀)、N
是否考虑边的方向。取值为true或者false,默认值为true。 weight 否 String 边上权重,取值为空或字符串。 当某边没有对应属性时,权重将默认为1。 空:边上的权重、距离默认为“1"。 字符串:对应的边上的属性将作为权重。 说明: 不支持对缺失属性值的默认处理,会直接报错。
根据输入参数,执行subgraph matching算法。 子图匹配(subgraph matching)算法的目的是在一个给定的大图里面找到与一个给定小图同构的子图,这是一种基本的图查询操作,意在发掘图重要的子结构。 URI POST /ges/v1.0/{project_id}/hyg/{graph_name}/algorithm
Subject-Token的值)。 表3 请求Body参数 参数 是否必选 参数类型 描述 metadata_path 是 String 元数据存储地址。 name 是 String 元数据的名字。 description 否 String 对元数据的描述。 响应参数 状态码: 200
2000],默认值为100。 weight 否 String 边上权重,取值为空或字符串, 当图中的边没有配置该属性时,算法会报错。 空:边上的权重、距离默认为“1"。 字符串:对应的边上的属性将作为权重。 OD_pairs和seeds参数二选一,当OD_pairs和seeds同时输
问)。这种场景,API的SERVER_URL为GES Console图详情的内网访问地址或者管理面API查询图详情返回体的"privateIp"字段的值。 通过ECS访问,但创建ECS的VPC和创建图选定的VPC不是同一个。需要对ECS所在的VPC和建图用的VPC创建VPC对等连
删除图 如果已完成图数据的分析,您可以删除图以释放资源。 删除图,默认不保留图备份,相关备份也会被删除,数据无法恢复,请谨慎操作。 删除图的具体操作步骤如下: 登录图引擎服务管理控制台。 在左侧导航栏,选择“图管理”。 在图管理列表中,选择需删除的图,在“操作”列选择“更多”>“删除”。
String 输入路径的起点ID。 directed 否 Boolean 是否考虑边的方向。取值为true或false。 说明: false当前版本在有权图上不支持。 当数据集不包含inedge时,若directed=true,选择一个不依赖于Inedge的算法实现版本计算输出,
Microsoft Edge:99.0.1150.39及更高版本。 从GES导出的CSV文件打开说明 如果将从GES导出的CSV文件(从图访问可视化界面导出、导出图、算法结果导出等场景)下载到本地,默认会用系统的Excel软件打开(推荐使用文本编辑器打开)。如果数据中包含“+”、“-”
k核算法(kcore) 功能介绍 根据输入参数,执行K核算法。 K核算法是图算法中的一个经典算法,用以计算每个节点的核数。其计算结果是判断节点重要性最常用的参考值之一,较好的体现了节点的传播能力。 URI POST /ges/v1.0/{project_id}/hyg/{graph_name}/algorithm
说明 directed 否 Boolean 是否考虑边的方向。取值为true或false,默认值为false。 weight 否 String 边上权重。取值为:空或字符串。 空:边上的权重、距离默认为1。 字符串:对应的边上的属性将作为权重,当某边没有对应属性时,权重将默认为1。
失败时,result值为failed。 表3 data 参数 类型 说明 name String 图名称。 vertex Json 包含的点标签、属性信息。 edge Json 包含的边标签、属性信息。 policy String 切分策略。 inEdge Boolean 是否包含入边。 idIndex
根据输入参数,执行BigClam算法。 BigClam算法是一种重叠社区发现算法,该算法将节点与社区之间的关系建模为一个二部图,假设图中节点的连边是根据社区关系生成的,其可以检测出图中的重叠社区。 URI POST /ges/v1.0/{project_id}/hyg/{graph_name}/algorithm
功能介绍 根据输入参数,执行infomap算法。 infomap算法是一种基于信息论的社区发现算法,该算法在效率和效果上都表现较好,并且能够发现层次性的社区结构,其优化目标为找到最优的社区结构,使节点的层次编码长度最小。 URI POST /ges/v1.0/{project_id}
String 图更新时间。 privateIp String 图实例私有网络访问浮动IP地址,通过该IP用户可以通过私有网络中已部署的弹性云服务器对图实例进行访问。 publicIp String 图实例公网访问地址,通过该IP用户可以从互联网对图实例进行访问。 arch String 图实
k跳算法(k_hop) 功能介绍 根据输入参数,执行k跳算法。 k跳算法从起点出发,通过宽度优先搜索(BFS),找出k层与之关联的所有节点。找到的子图称为起点的“ego-net”。k跳算法会返回ego-net中节点及其个数。 URI POST /ges/v1.0/{project_i