检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
万能近似定理意味着无论我们试图学习什么函数,我们知道一个大的 MLP 一定能够表示这个函数。然而,我们不能保证训练算法能够学得这个函数。即使 MLP能够表示该函数,学习也可能因两个不同的原因而失败。首先,用于训练的优化算法可能找不到用于期望函数的参数值。其次,训练算法可能由于过拟合而选择了错误的函数。回忆第
有很多整流线性单元的扩展存在。大多数这些扩展的表现比得上整流线性单元,并且偶尔表现得更好。整流线性单元的一个缺陷是它们不能通过基于梯度的方法学习那些使它们激活为零的样本。整流线性单元的各种扩展保证了它们能在各个位置都接收到梯度。整流线性单元的三个扩展基于当 zi < 0 时使用一个非零的斜率
并不需要被设计为考虑这些因素的影响。鉴于很多计算机科学家和软件工程师在一个相对干净和确定的环境中工作,机器学习对于概率论的大量使用不得不令人吃惊。 这是因为机器学习必须始终处理不确定量,有时也可能需要处理随机 (非确定性) 量。不确定性和随机性可能来自多个方面。研究人员至少从
让机器学习模型泛化得更好的最好办法是使用更多的数据进行训练。当然,在实践中,我们拥有的数据量是很有限的。解决这个问题的一种方法是创建假数据并添加到训练集中。对于一些机器学习任务,创建新的假数据相当简单。对分类来说这种方法是最简单的。分类器需要一个复杂的高维输入 x,并用单个类别标识
顾名思义就是虚拟出来的电脑,这个虚拟出来的电脑和真实的电脑几乎完全一样,所不同的是他的硬盘是在一个文件中虚拟出来的,所以你可以随意修改虚拟机的设置,而不用担心对自己的电脑造成损失,因此可以用来做试验什么的,虚拟机是指运行在Windows或Linux计算机上的一个应用程序,这个应用程序“模拟”了一个基于x86的标准
决这一问题,引入了深度强化学习(Deep Reinforcement Learning)的概念。本文将介绍深度强化学习的基本概念、算法原理以及在实际应用中的一些案例。 深度强化学习的基本概念 深度强化学习是将深度学习与强化学习相结合的一种方法。在深度强化学习中,智能体通过与环
1.4 优化深度学习的方法目前,深度学习在多种目标分类和识别任务中取得优于传统算法的结果,并产生大量优秀的模型,使用迁移学习方法将优秀的模型应用在其他任务中,可以达到在减少深度学习训练时间的前提下,提升分类任务性能,同时降低对训练集规模的依赖,关于迁移学习及其实例分析将在第6章进
卷积网络是为识别二维形状而特殊设计的一个多层感知器,这种网络结构对平移、比例缩放、倾斜或者共他形式的变形具有高度不变性。 这些良好的性能是网络在有监督方式下学会的,网络的结构主要有稀疏连接和权值共享两个特点,包括如下形式的约束:1、 特征提取。每一个神经元从上一层的局部接受域得到
小批量是随机抽取的这点也很重要。从一组样本中计算出梯度期望的无偏估计要求这些样本是独立的。我们也希望两个连续的梯度估计是互相独立的,因此两个连续的小批量样本也应该是彼此独立的。很多现实的数据集自然排列,从而使得连续的样本之间具有高度相关性。例如,假设我们有一个很长的血液样本测试结
些理论结果表明,我们为神经网络设计的任何优化算法都有性能限制 (Blum and Rivest, 1992; Judd, 1989; Wolpert and MacReady, 1997)。通常这些结果不影响神经网络在实践中的应用。一些理论结果仅适用于神经网络的单元输出离散值的情
目前为止,最流行和广泛使用的参数共享出现在应用于计算机视觉的卷积神经网络(CNN)中。自然图像有许多统计属性是对转换不变的。例如,猫的照片即使向右边移了一个像素,仍保持猫的照片。CNN通过在图像多个位置共享参数来考虑这个特性。相同的特征(具有相同权重的隐藏单元)在输入的不同位置上
目前为止,我们将Dropout介绍为一种纯粹高效近似Bagging的方法。然而,还有比这更进一步的Dropout观点。Dropout不仅仅是训练一个Bagging的集成模型,并且是共享隐藏单元的集成模型。这意味着无论其他隐藏单元是否在模型中,每个隐藏单元必须都能够表现良好。隐藏单
也造就了深度学习的蓬勃发展,“深度学习”才一下子火热起来。击败李世石的Alpha go即是深度学习的一个很好的示例。Google的TensorFlow是开源深度学习系统一个比较好的实现,支持CNN、RNN和LSTM算法,是目前在图像识别、自然语言处理方面最流行的深度神经网络模型
Convolutional Neural Networks (CNN)卷积神经网络AutoEncoder 自动编码器Sparse Coding 稀疏编码Restricted Boltzmann Machine(RBM)
矩阵和向量相乘矩阵乘法是矩阵运算中最重要的操作之一。两个矩阵A和B的矩阵相乘是第三个矩阵C。为了使乘法可被定义,矩阵A的列数必须和矩阵B的行数相等。如果矩阵A的形状是m x n,矩阵B的形状是n x p,那么矩阵C的形状是m x p。我们可以通过将两个或多个矩阵并列放置以书写矩阵乘法,列如
对于实际中感兴趣的网络,是否存在大量代价很高的局部极小值,优化算法是否会碰到这些局部极小值,都是尚未解决的公开问题。多年来,大多数从业者认为局部极小值是困扰神经网络优化的常见问题。如今,情况有所变化。这个问题仍然是学术界的热点问题,但是学者们现在猜想,对于足够大的神经网络而言,大
在数字计算机上实现连续数学的根本困难是,我们需要通过有限数量的位模式来表示无限多的实数。这意味着我们在计算机中表示实数时,几乎总会引入一些近似误差。在许多情况下,这仅仅是舍入误差。如果在理论上可行的算法没有被设计为最小化舍入误差的累积,可能就会在实践中失效,因此舍入误差会导致一些问题。一种特别的毁灭性舍入误差是下溢
条件数表明函数相对于输入的微小变化而变化的快慢程度。输入被轻微扰动而迅速改变的函数对于科学计算来说是可能是有问题的,因为输入中的舍入误差可能导致输出的巨大变化。 考虑函数 f(x) = A−1x。当 A ∈ Rn×n 具有特征值分解时,其条件数为:
的悬崖结构时,梯度更新会很大程度地改变参数值,通常会完全跳过这类悬崖结构。不管我们是从上还是从下接近悬崖,情况都很糟糕,但幸运的是我们可以用使用介绍的启发式梯度截断(gradient clipping)来避免其严重的后果。其基本想法源自梯度并没有指明最佳步长,只说明了在无限小区域
比其他算法更敏感,这通常有两个可能原因。一个是它们使用了很难在少量样本上精确估计的信息,另一个是它们以放大采样误差的方式使用了信息。仅基于梯度 g的更新方法通常相对鲁棒,并能使用较小的批量获得成功,如 100。使用Hessian矩阵 H,计算如 H−1g 更新的二阶方法通常需要更大的批量,如