检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
R-CNN 的全连接层的相同架构。5.5 深度残差网络He 等人 (2015) 提出的残差网络 (ResNet) 由 152 层组成。ResNet 具有较低的误差,并且容易通过残差学习进行训练。更深层次的 ResNet 可以获得更好的性能。在深度学习领域,人们认为 ResNet 是一个重要的进步。5
深度学习服务是基于华为云强大高性能计算提供的一站式深度学习平台服务,内置大量优化的网络模型,以便捷、高效的方式帮助用户轻松使用深度学习技术,通过灵活调度按需服务化方式提供模型训练。
我们看到PCA算法提供了一种压缩数据的方式。我们也可以将PCA视为学习数据表示的无监督学习算法。这种表示基于上述简单表示的两个标准。PCA学习一种比原始输入低维的表示。它也学习了一种元素之间彼此没有线性相关的表示。这是学习表示中元素统计独立标准的第一步。要实现完全独立性,表示学习算法必须也去掉变量间的非线性关系。PCA将输入
h 的几何深度学习扩展库 3 TensorFlow TensorFlow - Google 使用数据流图进行可扩展机器学习的计算 TensorLayer - 面向研究人员和工程师的深度学习和强化学习库。 TFLearn - 深度学习库,具有更高级别的
索了元学习的能力,同时在数据层面研究了异质信息网络的表达能力。在MetaHIN中,作者提出使用多方面的语义上下文来增强每个用户的任务,因此设计了一种新颖的语义增强型任务构建器,用于在元学习场景中捕获异质信息网络中的语义信息。进一步地,我们构建了一个协同适应元学习器。该学习器既具有
机器学习的主要挑战是我们的算法必须能够在先前未观测的新输入上表现良好,而不只是在训练集上效果好。在先前未观测到的输入上表现良好的能力被称为泛化 (generalization)。通常情况下,当我们训练机器学习模型时,我们可以访问训练集,在训练集上计算一些度量误差,被称为训练误差 (training
于其他超参数的取值,并且深度神经网络中超参数的微调代价很大,所以有必要在超参数这个重要领域内做更进一步的研究。在许多领域深度学习都表现出巨大的潜力,但深度学习作为机器学习的一个新领域现在仍处于发展阶段,仍然有很多工作需要开展,很多问题需要解决,尽管深度学习的研究还存在许多问题,但
持不变,还必须掌握对特定对象(如移动身体的部分)保持不变的因素。因此根据流形正切分类器提出的算法相当简单:(1)使用自编码器通过无监督学习来学习流形的结构,以及(2)如正切传播(式 (7.67) )一样使用这些切面正则化神经网络分类器。
正如我们已经看到的,最近邻预测和决策树都有很多的局限性。尽管如此,在计算资源受限制时,它们都是很有用的学习算法。通过思考复杂算法和 k-最近邻或决策树之间的相似性和差异,我们可以建立对更复杂学习算法的直觉。
因为这个求和包含多达指数级的项,除非该模型的结构允许某种形式的简化,否则是不可能计算的。目前为止,无法得知深度神经网络是否允许某种可行的简化。相反,我们可以通过采样近似推断,即平均许多掩码的输出。即使是 10 − 20 个掩码就足以获得不错的表现。然而,一个更好的方法能不错地近似
从数学上来看,深度神经网络仅仅是一种函数的表达形式,是复杂的多层复合函数。由于它有大量的可调参数,而且近年来随着大数据、优化算法和并行计算GPU硬件的发展,使得用大规模的神经网络来逼近和拟合大数据成为可能。
较大时,Cramér-Rao 下界(Rao, 1945; Cramér, 1946) 表明不存在均方误差低于最大似然学习的一致估计。因为这些原因(一致性和统计效率),最大似然通常是机器学习中的首选估计。当样本数目小到会过拟合时,正则化策略如权重衰减可用于获得训练数据有限时方差较小的最大似然有偏版本。
当然会由于减小训练误差而得到足够的好处,以抵消其带来的训练误差和测试误差间差距的增加。随着数据集的规模迅速增长,超越了计算能力的增速,机器学习应用每个样本只使用一次的情况变得越来越常见,甚至是不完整地使用训练集。在使用一个非常大的训练集时,过拟合不再是问题,而欠拟合和计算效率变成了主要的顾虑。读者也可以参考
入对应不同的输出,那么训练误差可能会大于零)。最后,我们也可以将参数学习算法嵌入另一个依所需增加参数数目的算法来创建非参数学习算法。例如,我们可以想象一个算法,外层循环调整多项式的次数,内存循环通过线性回归学习模型。理想模型假设我们能够预先知道生成数据的真实概率分布。然而这样的模
大脑。1956年,FrankRosenblatt发明了最早的神经网络-权重加权感知机Perceptron,它可以通过权值调整输出,模拟人类学习过程。1960年,MinskyandPapert的“Perceptrons”认为此类神经网络有许多限制(如无法解决复杂分类任务和把线性不可
对于如何处理估计不确定性的这个问题,贝叶斯派的答案是积分,这往往会防止过拟合。积分当然是概率法则的应用,使贝叶斯方法容易验证,而频率派机器学习基于相当特别的决定构建了一个估计,将数据集里的所有信息归纳到一个单独的点估计。贝叶斯方法和最大似然方法的第二个最大区别是由贝叶斯先验分布造
非常小。另一方面,实验中梯度下降似乎可以在许多情况下逃离鞍点。Goodfellow et al. (2015) 可视化了最新神经网络的几个学习轨迹,给了一个例子。这些可视化显示,在突出的鞍点附近,代价函数都是平坦的,权重都为零。但是他们也展示了梯度下降轨迹能够迅速逸出该区间。Goodfellow
− 1 损失,它能够从训练数据中抽取更多信息。一般的优化和我们用于训练算法的优化有一个重要不同:训练算法通常不会停止在局部极小点。反之,机器学习通常优化代理损失函数,但是在基于提前终止(第 7.8 节)的收敛条件满足时停止。通常,提前终止使用真实潜在损失函数,如验证集上的 0 − 1
最常用的方法是输出模型在一些样本上概率对数的平均值。通常,我们会更加关注机器学习算法在未观测数据上的性能如何,因为这将决定其在现实生活中的性能如何。因此,我们使用测试数据来评估系统性能,同训练机器学习系统的数据分开。性能度量的选择或许看上去简单且客观,但是选择一个与系统理想表现
是输出模型在一些样本上概率对数的平均值。 通常,我们会更加关注机器学习算法在未观测数据上的性能如何,因为这将决定其在现实生活中的性能如何。因此,我们使用测试数据来评估系统性能,同训练机器学习系统的数据分开。性能度量的选择或许看上去简单且客观,但是选择一个与系统理想表现对应的性能度量通常是很难的。