检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
有时候,在 x 的所有可能值下最大化或最小化一个函数 f(x) 不是我们所希望的。相反,我们可能希望在 x 的某些集合 S 中找 f(x) 的最大值或最小值。这被称为约束优化 (constrained optimization)。在约束优化术语中,集合 S 内的点 x 被称为可行
你的回答可能就是一个随机变量。 随机变量可以分为两种类型:连续型和离散型。 `随机变量的分布`用来描述随机变量出现某种结果的可能性。可以用一些分布函数来表示。 常见的概率分布有几种。这里只看最常见的一种概率分布,就是`正态分布`也叫高斯分布。 很多情况下,还有一种叫做`条件概率
在许多情况下,神经网络在独立同分布的测试集上进行评估已经达到了人类表现。因此,我们自然要怀疑这些模型在这些任务上是否获得了真正的人类层次的理解。为了探索网络对底层任务的理解层次,我们可以探索这个模型错误分类的例子。 Szegedy et al. (2014b) 发现,在精度达到人
如果没有激活函数,神经网络会变成什么呢? 答案是如果没有激活函数,那么无论神经网络的结构有多复杂,它都将退化为一个线性模型。现实的回归问题或者分类问题的决策边界通常都是复杂且非线性的。这要求模型具有产生复杂的非线性决策边界的能力,在这一点上激活函数在神经网络中扮演了非常重要的角色
第一个支持流形假设 (manifold hypothesis) 的观察是现实生活中的图像,文本,声音的概率分布都是高度集中的。均匀的噪扰从来没有和这类领域的结构化输入相似过。显示均匀采样的点看上去像是没有信号时模拟电视上的静态模式。同样,如果我们均匀地随机抽取字母来生成文件,能有
下面是一个简单的例子来介绍线性回归模型。 数据是在多个市场的3个不同渠道的广告投入以及商品销量。 这个模型的意义也就很明白了,那就是找出在这3个不同渠道广告投入与最终的商品销量之间的关系。 先把数据可视化: ```python %config InlineBackend.figure_format='retina'
在实际中训练误差常常偏小, 不是模型真实误差的好的估计值。这是因为如果考试题目是我们做过的作业题,那么我们更容易得高分。所以我们要有一些测试数据是不要参加模型训练的,需要搁置在一旁,直到模型完全建立好,再用来计算模型的测试误差。模型的预测效果较差,经常是由于两类问题导致的。那就是
这种方法由Lasserre et al. (2006) 提出,正则化一个模型(监督模式下训练的分类器)的参数,使其接近另一个无监督模式下训练的模型(捕捉观察到的输入数据的分布)的参数。这种构造架构使得许多分类模型中的参数能与之对应的无监督模型的参数匹配。参数范数惩罚是正则化参数使
这种方法由Lasserre et al. (2006) 提出,正则化一个模型(监督模式下训练的分类器)的参数,使其接近另一个无监督模式下训练的模型(捕捉观察到的输入数据的分布)的参数。这种构造架构使得许多分类模型中的参数能与之对应的无监督模型的参数匹配。参数范数惩罚是正则化参数使
们实现的整体函数被证明是高度线性的。这些线性函数很容易优化。不幸的是,如果一个线性函数具有许多输入,那么它的值可以非常迅速地改变。如果我们用 ϵ 改变每个输入,那么权重为w 的线性函数可以改变 ϵ ∥w∥1 之多,如果 w 是高维的这会是一个非常大的数。对抗训练通过鼓励网络在训练
施建设重要一方面是继续夯实通用算力基础。 当前算力供给已经无法满足智能化社会构建,根据OpenAI统计,从2012年至2019年,随着深度学习“大深多”模型的演进,模型计算所需计算量已经增长30万倍,无论是计算机视觉还是自然语言处理,由于预训练模型的广泛使用,模型所需算力直接呈
另一种是在深度概率模型中使用的方法,它不是将计算图的深度视为模型深度,而是将描述概念彼此如何关联的图的深度视为模型深度。在这种情况下,计算每个概念表示的计算流程图的深度 可能比概念本身的图更深。这是因为系统对较简单概念的理解在给出更复杂概念的信息后可以进一步精细化。
深度学习简介 一、神经网络简介 深度学习(Deep Learning)(也称为深度结构学习【Deep Structured Learning】、层次学习【Hierarchical Learning】或者是深度机器学习【Deep Machine Learning】)是一类算法集合,是机器学习的一个分支。
同的特征置于哪一层。也就是说,相比于传统机器学习算法需要提供人工定义的特征,深度学习可以自己学习如何提取特征。因此,相比于传统的机器学习算法,深度学习并不依赖复杂且耗时的手动特征工程。 深度学习中的“深度”体现在将数据转换为所需要数据的层数之深。给定模型进行数据输入,可以将描述模
深度学习: 学习率 (learning rate) 作者:liulina603 致敬 原文:https://blog.csdn.net/liulina603/article/details/80604385 深度学习: 学习率 (learning
们可以平均该网格中样本对应的的目标值。但是,如果该网格中没有样本,该怎么办呢?因为在高维空间中参数配置数目远大于样本数目,大部分配置没有相关的样本。我们如何能在这些新配置中找到一些有意义的东西?许多传统机器学习算法只是简单地假设在一个新点的输出应大致和最接近的训练点的输出相同。然而在高维空间中,这个假设是不够的。
在深度学习领域, 特别是在NLP(深度学习领域研究最热潮激动人心的领域)中,模型的规模正在不断增长。最新的GPT-3模型有1750亿个参数。把它和BERT比较就像把木星比作蚊子一样(好吧,不是字面意思)。深度学习的未来会更大吗? 按理来说,不会,GPT-3是非常有说
Dropout的另一个显著优点是不怎么限制适用的模型或训练过程。几乎在所有使用分布式表示且可以用随机梯度下降训练的模型上都表现很好。包括前馈神经网络、概率模型,如受限玻尔兹曼机(Srivastava et al., 2014),以及循环神经网络(Bayer and Osendorfer
将模型表示为给定输入后,计算对应输出的流程图,则可以将这张流程图中的最长路径视为模型的深度。正如两个使用不同语言编写的等价程序将具有不同的长度;相同的函数可以被绘制为具有不同深度的流程图,其深度取决于我们可以用来作为一个步骤的函数。图1.3说明了语言的选择如何给相同的架构两个不同的衡量。图
深度学习是机器学习的一种,而机器学习是实现人工智能的必经路径。深度学习的概念源于人工神经网络的研究,含多个隐藏层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。研究深度学习的动机在于建立模拟人脑进行分析学